-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
365 lines (305 loc) · 17.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import torch
import numpy as np
import time
from tensorboardX import SummaryWriter
import argparse
import os
import warnings
import ruamel.yaml as yaml
import pathlib
import sys
from pathlib import Path
import datetime
import json
import utils
import wrappers
from agents import Agent
warnings.filterwarnings('ignore', '.*box bound precision lowered.*')
# os.environ['MUJOCO_GL'] = 'egl'
def visualize_current_obs(obs):
import matplotlib.pyplot as plt
plt.imshow(obs.cpu().permute(1,2,0) + 0.5)
plt.show()
@utils.retry
def save_model(model, save_dir):
torch.save(model, save_dir)
def collect_random_episode(env, model, preferred_obs, episode_store, returns, free_energies, config):
with torch.no_grad():
device = config['device']
episode = dict(obs=[], act=[], rew=[], free_energy=[], done=[])
timestep = env.reset()
obs = wrappers.get_scaled_obs(timestep, device=device, is_minigrid='minigrid' in config['suite'])
episode['obs'].append(obs.cpu())
prev_state = None
done = False
cur_return = 0
cur_free_energy = 0
while not done:
action = env.action_space.sample()
timestep, rew, done, info = env.step(action)
obs = wrappers.get_scaled_obs(timestep, device=device, is_minigrid='minigrid' in config['suite'])
rew_tensor = torch.Tensor([rew]).to(device)
# Minigrid only: to simplify reward prediction, as the agent has no knowledge of time
if 'minigrid' in config['suite'] and rew_tensor > 0:
rew_tensor = torch.ones_like(rew_tensor)
#
done_tensor = torch.Tensor([done]).to(device)
current_obs = obs.expand(1, 1, *obs.shape)
prev_state = model.step(current_obs.to(device), torch.Tensor([rew]).reshape(1,1,1).to(device), torch.from_numpy(action).to(device).view(1, 1, *action.shape).to(device), prev_state)
free_energy = model.eval_obs(obs, rew_tensor, preferred_obs, prev_state)
episode['obs'].append(obs.cpu())
episode['act'].append(torch.from_numpy(action))
episode['rew'].append(rew_tensor.cpu())
episode['done'].append(done_tensor.cpu())
episode['free_energy'].append(free_energy.cpu())
cur_return += rew
cur_free_energy += free_energy.cpu().numpy()
episode_store.add(np.stack(episode['obs'], axis=0), np.stack(episode['act'], axis=0), np.stack(episode['rew'], axis=0), np.stack(episode['free_energy'], axis=0), np.stack(episode['done'], axis=0))
returns.append(cur_return)
free_energies.append(cur_free_energy)
def collect_eval_episode(env, model, preferred_obs, config, policy_lookahead=1):
with torch.no_grad():
device = config['device']
# Reset
timestep = env.reset()
obs = wrappers.get_scaled_obs(timestep, device=device, is_minigrid='minigrid' in config['suite'])
prev_state = None
cur_return = 0
cur_free_energy = 0
policy_dict = dict()
done = False
while not done:
policy_distr, policy_actions, future_loss_dict = model.policy_distribution(policy_lookahead, [model.policy], preferred_obs, prev_state, eval_mode=True)
for k in future_loss_dict:
if k in policy_dict:
policy_dict[k] += future_loss_dict[k]
else:
policy_dict[k] = future_loss_dict[k]
# Action
for policy_step in range(policy_lookahead):
action_index = policy_distr.sample()
action = policy_actions[action_index][policy_step].cpu()
timestep, rew, done, info = env.step(action.numpy())
obs = wrappers.get_scaled_obs(timestep, device=device, is_minigrid='minigrid' in config['suite'])
rew_tensor = torch.Tensor([rew]).to(device)
# Minigrid only: to simplify reward prediction, as the agent has no knowledge of time
if 'minigrid' in config['suite'] and rew_tensor > 0:
rew_tensor = torch.ones_like(rew_tensor)
#
done_tensor = torch.Tensor([done]).to(device)
current_obs = obs.expand(1, 1, *obs.shape)
prev_state = model.step(current_obs.to(device), torch.Tensor([rew]).reshape(1,1,1).to(device), action.view(1, 1, *action.shape).to(device), prev_state)
free_energy = model.eval_obs(obs, rew_tensor, preferred_obs, prev_state)
cur_return += rew
cur_free_energy += free_energy.cpu().numpy()
if done:
break
return cur_return, cur_free_energy
def main(config):
# Setup logs
if config['seed'] is not None:
seed = int(config['seed'])
torch.manual_seed(seed)
np.random.seed(seed)
seed_str = str(datetime.datetime.now().timestamp()) if config['seed'] is None else 'seed_' + str(seed)
logdir = Path(config['logdir']) / config['suite'] / config['task'] / '_'.join(config['config']) / config['algo'] / seed_str
if not os.path.isdir(logdir):
os.makedirs(logdir)
writer = SummaryWriter(logdir=str(logdir))
with open(str(logdir/'config.json'), 'w') as fp:
json.dump(config, fp, indent=4)
# Options
device = 'cuda:0' if torch.cuda.is_available() and not config['disable_cuda'] else 'cpu'
config['device'] = device
# Create env
env = wrappers.make_env(suite=config['suite'], task_name=config['task'], grid_size=config['grid_size'])
config['action_size'] = env.action_space.shape[0]
action_repeat = env._action_repeat
# Setup model
model = Agent(device=device, config=config)
if config['suite'] == 'minigrid_pixels':
if config['task'] == 'empty':
preferred_obs = wrappers.get_scaled_obs(dict(image=torch.load(f'preferred_states/empty_goal_dir_0.pt')*255), device, is_minigrid=False).permute(2,0,1)
preferred_obs = torch.nn.functional.pad(preferred_obs, (0, 1, 0, 1))
else:
raise NotImplementedError('No preferred state defined')
elif config['use_rewards']:
preferred_obs = None
else:
preferred_obs = wrappers.get_scaled_obs(dict(image=torch.load(f'preferred_states/{config["task"]}.pt')), device, is_minigrid='minigrid' in config['suite'])
policy_lookahead = 1
expl_amount = config['expl_amount']
# Setup training
total_steps = int(config['total_steps'])
max_episodes = config['max_episodes'] if config['max_episodes'] is not None else int(sys.maxsize)
episode_store = utils.EpisodeStore()
balance_ends = config['action_dist'] == 'one_hot'
current_step = 0
tot_episodes = 0
century = 0
# Populate episode store
random_init_episodes = config['random_init_episodes']
print(f"Collecting {random_init_episodes} episodes for init...")
init_returns = []
init_free_energies = []
while len(init_returns) < random_init_episodes:
collect_random_episode(env, model, preferred_obs, episode_store, init_returns, init_free_energies, config)
print("Random collection completed...", ' Return: ', np.round(np.mean(init_returns), 2))
writer.add_scalar('environment/return', np.mean(init_returns), global_step=current_step)
writer.add_scalar('environment/free_energy', np.mean(init_free_energies), global_step=current_step)
# Reset
episode = dict(obs=[], act=[], rew=[], free_energy=[], done=[])
timestep = env.reset()
if config['render_every'] > 0 and tot_episodes % config['render_every'] == 0:
env.render()
obs = wrappers.get_scaled_obs(timestep, device=device, is_minigrid='minigrid' in config['suite'])
episode['obs'].append(obs.cpu())
prev_state = None
cur_return = 0
policy_dict = dict()
done = True
while current_step < total_steps:
if tot_episodes >= max_episodes:
print('Maximum Episodes reached!')
break
if done and episode_store.n_episodes > 0:
print(f'E: {tot_episodes} | Updating model and policies...')
n_epochs = config['n_epochs']
n_paths = config['n_paths']
n_steps = config['n_steps']
horizon = config['horizon']
main_loss_dict = dict()
main_policy_loss_dict = dict()
for i in range(n_epochs):
log_time = i == n_epochs - 1
log_images = (config['recon_every'] > 0) and (tot_episodes % config['recon_every'] == 0) and log_time
path_obs, path_act, path_rew, path_done = episode_store.sample_paths(n_paths, n_steps, balance_ends=balance_ends)
update_target = i + 1 % 100 == 0
states, loss_dict, reconstruction_dict = model.train_world(path_obs, path_act, path_rew, preferred_obs, path_done=path_done,
update_target=update_target, get_reconstruction=log_images)
policy_loss_dict = model.train_policy_value(horizon, model.policy, states, preferred_obs, obs_batch=path_obs)
for k in loss_dict:
if k in main_loss_dict:
main_loss_dict[k] += loss_dict[k] / n_epochs
else:
main_loss_dict[k] = loss_dict[k] / n_epochs
for k in policy_loss_dict:
if k in main_policy_loss_dict:
main_policy_loss_dict[k] += policy_loss_dict[k] / n_epochs
else:
main_policy_loss_dict[k] = policy_loss_dict[k] / n_epochs
# Logging
for k,v in main_loss_dict.items():
writer.add_scalar('world_model/' + k, v, global_step=current_step)
if len(reconstruction_dict) > 0:
print('Logging videos')
for k, v in reconstruction_dict.items():
if config['suite'] == 'minigrid':
new_tensor = []
for k_group, v_group in enumerate(v):
new_group = []
for k_frame, v_frame in enumerate(v[k_group]):
new_group.append(env._env._env.get_obs_render(
torch.clamp(v_frame, 0, 5).permute(1,2,0).round().int().numpy(),
tile_size=8
))
new_tensor.append(new_group)
v = torch.tensor(new_tensor).permute(0,1,4,2,3)
writer.add_video(k, v.permute(1,0,2,3,4), global_step=current_step, fps=15)
for k, v in main_policy_loss_dict.items():
writer.add_scalar('policy/' + k, v, global_step=current_step)
if model.reinforce or not config['use_rewards']:
print('Updating Value Model Target...')
model.update_target_network(1., model.value_model, model.value_target)
# Save model
if config['save_every'] > 0 and tot_episodes % config['save_every'] == 0:
save_model(model, str(logdir / f'world_model.pt'))
done = False
while not done:
# Policy Selection
if current_step // 100 > century:
print('Step: ', current_step)
century += 1
policy_distr, policy_actions, future_loss_dict = model.policy_distribution(policy_lookahead, [model.policy], preferred_obs, prev_state)
for k in future_loss_dict:
if k in policy_dict:
policy_dict[k] += future_loss_dict[k]
else:
policy_dict[k] = future_loss_dict[k]
# Action
for policy_step in range(policy_lookahead):
action_index = policy_distr.sample()
action = policy_actions[action_index][policy_step].cpu()
if config['action_dist'] == 'one_hot':
if np.random.rand() < expl_amount:
action = torch.from_numpy(env.action_space.sample()).float()
expl_amount = max(config['expl_amount'] * (config['expl_steps'] * action_repeat - current_step) / (config['expl_steps'] * action_repeat), 0)
else:
act_noise = torch.randn(*action.shape, device=action.device) * expl_amount
action = torch.clamp(action + act_noise, -1, 1)
timestep, rew, done, info = env.step(action.numpy())
if config['render_every'] > 0 and tot_episodes % config['render_every'] == 0:
env.render()
obs = wrappers.get_scaled_obs(timestep, device=device, is_minigrid='minigrid' in config['suite'])
rew_tensor = torch.Tensor([rew]).to(device)
# Minigrid only: to simplify reward prediction, as the agent has no knowledge of time
if 'minigrid' in config['suite'] and rew_tensor > 0:
rew_tensor = torch.ones_like(rew_tensor)
#
done_tensor = torch.Tensor([done]).to(device)
current_obs = obs.expand(1, 1, *obs.shape)
prev_state = model.step(current_obs.to(device), torch.Tensor([rew]).reshape(1,1,1).to(device), action.view(1, 1, *action.shape).to(device), prev_state)
free_energy = model.eval_obs(obs, rew_tensor, preferred_obs, prev_state)
episode['obs'].append(obs.cpu())
episode['act'].append(action.cpu())
episode['rew'].append(rew_tensor.cpu())
episode['done'].append(done_tensor.cpu())
episode['free_energy'].append(free_energy.cpu())
current_step += 1 * action_repeat
cur_return += rew
if done:
tot_episodes += 1
episode_store.add(np.stack(episode['obs'], axis=0), np.stack(episode['act'], axis=0), np.stack(episode['rew'], axis=0), np.stack(episode['free_energy'], axis=0), np.stack(episode['done'], axis=0))
# print('Step: ', current_step, ' Return: ', np.round(cur_return, 2), 'Expected Free Energy: ', np.round(policy_dict['policy_expected_loss'],2) )
writer.add_scalar('environment/return', cur_return, global_step=current_step)
writer.add_scalar('environment/return_over_episodes', cur_return, global_step=tot_episodes)
writer.add_scalar('environment/free_energy', np.sum(episode['free_energy']), global_step=current_step)
for k in policy_dict:
writer.add_scalar('environment/' + k, policy_dict[k] , global_step=current_step)
# Record and/or eval
if config['record_every'] > 0 and tot_episodes % config['record_every'] == 0:
writer.add_video('environment/train_episode', np.expand_dims(np.stack(episode['obs'], axis=0) + 0.5, 0), global_step=tot_episodes, fps=15)
episode = dict(obs=[], act=[], rew=[], free_energy=[], done=[])
timestep = env.reset()
if config['render_every'] > 0 and tot_episodes % config['render_every'] == 0:
env.render()
obs = wrappers.get_scaled_obs(timestep, device=device, is_minigrid='minigrid' in config['suite'])
episode['obs'].append(obs.cpu())
prev_state = None
cur_return = 0
policy_dict = dict()
# This breaks the policy_step cycle
break
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--suite', help='suite name', default='dmc')
parser.add_argument('--task', help='task name', default='cheetah_run')
parser.add_argument('--algo', help='algo name', default='dreamer')
parser.add_argument('--config', nargs='+', help='configuration name', default=['base'])
parser.add_argument('--disable-cuda', help='disable cuda', action='store_true', default=False)
parser.add_argument('--seed', help='set random seed', default=None, type=int)
parser.add_argument('--save-every', help='save model', default=0, type=int)
parser.add_argument('--render-every', help='render agent', default=0, type=int)
parser.add_argument('--record-every', help='record training episodes', default=100, type=int)
parser.add_argument('--recon-every', help='log reconstructions as videos', default=0, type=int)
args = parser.parse_args()
configs = yaml.safe_load(
(pathlib.Path(sys.argv[0]).parent / 'configs.yaml').read_text())
conf = dict()
for k in ['base', *args.config]:
conf = dict(conf, **configs[k])
conf = dict(conf, **configs['algos'][args.algo])
for k in args.__dict__:
conf[k] = args.__dict__[k]
print(conf)
main(conf)