-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathCalculate_HFs.c
379 lines (318 loc) · 11.7 KB
/
Calculate_HFs.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#include "num_of_threads.h"
#include<omp.h>
#include"utils.h"
#include"structs.h"
#include"matrix_ops.h"
void Calculate_HFs(int *tlist,double *vlist,int nfac,int nvert,double *angles,HFstruct *HFs,double *offset,double *D,int dm,int dn,double *Weight,int Nfft,double A,double Gamma,double *scale,double *FT,double *FTdv,double* FTdS,int deriv)
{
/*tlist,vlist,angles -the asteroid shape
* AO struct contains the AO data
* offset naox2 vector, offsets,
* D is the derivative matrix (dm x dn), derivatives of vertex coordinates wrt parameters
* Weight is additional weighting terms for individual AO images, 1xnao vector (not implemented yet)
* Scale additional scaling terms for each ao image.
* deriv==1, then the derivatives will be calculated
* OUTPUT:
* FTr,FTi real and imaginary results
* Derivative matrix FTdvr (real) FTdvi (imag)
*/
/* Denote the total number of data points by ntpoints. Then
* FT is 2*ntpoints vector
* FTdv is 2*ntpoints x (3*dn+3+2*nao) matrix =[real(FTdx)*D real(FTdy)*D real(FTdz)*D real(FTdA) real(FTdoff);
* imag(FTdx)*D imag(FTdy)*D imag(FTdz)*D imag(FTdA) imag(FTdoff);...]
* FTdS is an optional matrix for Scaling terms
* NOTE THAT FTdv is assumed to be initialized to zero
*/
/*TBD: Combine real and complex matrices here*/
int DisNULL=0;
int D1V=0;
int D3V=0;
int UseScale=0;
if(scale!=NULL)
UseScale=1;
int nao;
nao=HFs->nhf; //Number of thermal images
/*First some sanity checking*/
if(D==NULL)
DisNULL=1;
if(!DisNULL && nvert!=dm)
{
puts("Error: nvert is not equal dm.");
exit(1);
}
int M,N;
int *nopoints,*cumpoints,ntpoints;
nopoints=HFs->nobs; //Array, number of samples in each AO image
cumpoints=malloc((nao+1)*sizeof(int));
cumpoints[0]=0;
for(int i=1;i<=nao;i++)
cumpoints[i]=cumpoints[i-1]+nopoints[i-1]; //cumpoints is the cumulative sum of all observation points, used for indexing
ntpoints=cumpoints[nao];//Total number of points
if(deriv==0)
{
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for
for(int obsind=0;obsind<nao;obsind++)
{
double Scale=1;
if(UseScale==1)
Scale=exp(scale[obsind]);
double *FTE,*FTE0,*FTTIME,*FTfreqx,*FTfreqy,*FTup,*FTdist,*FTHdist,*FTWL,*datar,*datai;
double *FTr;
double *FTi;
FTr=calloc(nopoints[obsind],sizeof(double));
FTi=calloc(nopoints[obsind],sizeof(double));
FTE=HFs->E+3*obsind;
FTE0=HFs->E0+3*obsind;
FTup=HFs->up+3*obsind;
FTTIME=HFs->TIME+obsind;
FTfreqx=HFs->freqx[obsind];
FTfreqy=HFs->freqy[obsind];
FTdist=HFs->distance+obsind;
FTHdist=HFs->Hdistance+obsind;
FTWL=HFs->WL+obsind;
datar=HFs->datar[obsind];
datai=HFs->datai[obsind];
// double time=omp_get_wtime();
Calculate_HF(tlist,vlist,nfac,nvert,angles,FTE,FTE0,FTup,*FTTIME,*FTdist,Gamma,A,*FTHdist,Nfft,*FTWL,FTfreqx,FTfreqy,nopoints[obsind],offset+2*obsind,FTr,FTi);
// printf("Time taken: %f\n",omp_get_wtime()-time);
for(int j=0;j<nopoints[obsind];j++)
{
FT[j+cumpoints[obsind]]=(datar[j]-Scale*FTr[j]);
FT[j+cumpoints[obsind]+ntpoints]=(datai[j]-Scale*FTi[j]);
}
free(FTr);
free(FTi);
}
free(cumpoints);
return;
}
int nvertf;
if(D!=NULL)
nvertf=dn;
else
{
nvertf=nvert;
dn=nvert;
}
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for
for(int obsind=0;obsind<nao;obsind++)
{
double Scale=1;
if(UseScale==1)
Scale=exp(scale[obsind]);
int cind=0;
int oind=0;
double complex *FTdx,*FTdy,*FTdz,*FTdA,*FTdoff;
double *FTdxfr,*FTdxfi,*FTdyfr,*FTdyfi,*FTdzfr,*FTdzfi;
double *FTE,*FTE0,*FTTIME,*FTfreqx,*FTfreqy,*FTdist,*FTup,*datar,*datai;
double *FTdAr,*FTdAi,*FTdoffr,*FTdoffi,*FTdxr,*FTdxi,*FTdyr,*FTdyi,*FTdzr,*FTdzi;
double *FTr,*FTi;
double *FTHdist,*FTWL;
// obsind=omp_get_thread_num();
FTr=calloc(nopoints[obsind],sizeof(double));
FTi=calloc(nopoints[obsind],sizeof(double));
//TBD: This is a temporary solution, fix this!
FTdAr=calloc(nopoints[obsind]*3,sizeof(double));
FTdAi=calloc(nopoints[obsind]*3,sizeof(double));
FTdoffr=calloc(nopoints[obsind]*2,sizeof(double));
FTdoffi=calloc(nopoints[obsind]*2,sizeof(double));
FTdxr=calloc(nopoints[obsind]*nvertf,sizeof(double));
FTdxi=calloc(nopoints[obsind]*nvertf,sizeof(double));
FTdyr=calloc(nopoints[obsind]*nvertf,sizeof(double));
FTdyi=calloc(nopoints[obsind]*nvertf,sizeof(double));
FTdzr=calloc(nopoints[obsind]*nvertf,sizeof(double));
FTdzi=calloc(nopoints[obsind]*nvertf,sizeof(double));
datar=HFs->datar[obsind];
datai=HFs->datai[obsind];
FTE=HFs->E+3*obsind;
FTE0=HFs->E0+3*obsind;
FTup=HFs->up+3*obsind;
FTTIME=HFs->TIME+obsind;
FTfreqx=HFs->freqx[obsind];
FTfreqy=HFs->freqy[obsind];
FTdist=HFs->distance+obsind;
FTHdist=HFs->Hdistance+obsind;
FTWL=HFs->WL+obsind;
if(D!=NULL)
{
FTdxfr=calloc(nopoints[obsind]*nvert,sizeof(double));
FTdyfr=calloc(nopoints[obsind]*nvert,sizeof(double));
FTdzfr=calloc(nopoints[obsind]*nvert,sizeof(double));
FTdxfi=calloc(nopoints[obsind]*nvert,sizeof(double));
FTdyfi=calloc(nopoints[obsind]*nvert,sizeof(double));
FTdzfi=calloc(nopoints[obsind]*nvert,sizeof(double));
//double time=omp_get_wtime();
Calculate_HF_deriv(tlist,vlist,nfac,nvert,angles,FTE,FTE0,FTup,*FTTIME,*FTdist,Gamma,A,*FTHdist,Nfft,*FTWL,FTfreqx,FTfreqy,nopoints[obsind],offset+2*obsind,FTr,FTi,FTdxfr,FTdxfi,FTdyfr,FTdyfi,FTdzfr,FTdzfi,FTdAr,FTdAi,FTdoffr,FTdoffi);
//Convert from vlistn->vlist by multiplying with D
matrix_prod(FTdxfr,nopoints[obsind],nvert,D,nvertf,FTdxr);
matrix_prod(FTdxfi,nopoints[obsind],nvert,D,nvertf,FTdxi);
free(FTdxfr);
free(FTdxfi);
matrix_prod(FTdyfr,nopoints[obsind],nvert,D,nvertf,FTdyr);
matrix_prod(FTdyfi,nopoints[obsind],nvert,D,nvertf,FTdyi);
free(FTdyfr);
free(FTdyfi);
matrix_prod(FTdzfr,nopoints[obsind],nvert,D,nvertf,FTdzr);
matrix_prod(FTdzfi,nopoints[obsind],nvert,D,nvertf,FTdzi);
free(FTdzfr);
free(FTdzfi);
}
else
Calculate_HF_deriv(tlist,vlist,nfac,nvert,angles,FTE,FTE0,FTup,*FTTIME,*FTdist,Gamma,A,*FTHdist,Nfft,*FTWL,FTfreqx,FTfreqy,nopoints[obsind],offset+2*obsind,FTr,FTi,FTdxr,FTdxi,FTdyr,FTdyi,FTdzr,FTdzi,FTdAr,FTdAi,FTdoffr,FTdoffi);
cind=cumpoints[obsind];
oind=nopoints[obsind];
for(int j=0;j<oind;j++)
{
FTr[j]=FTr[j]*Scale;
FTi[j]=FTi[j]*Scale;
FT[j+cind]=(datar[j]-FTr[j]); //TBD: FIX DERIVATIVE MATRIX ORDERING CORRESPONDING TO THIS!!!!!!!!!!!!!!!!!
FT[j+cind+ntpoints]=(datai[j]-FTi[j]);
}
/*Copy submatrices to the final matrix. This is a temporary solution. Streamline this to avoid unnecessary copying
* FTdv is is 2*ntpoints x 3*dn+3+2*nao matrix
*/
if(UseScale==1)
{
mult_with_cons(FTdxr,oind,nvertf,Scale);
mult_with_cons(FTdxi,oind,nvertf,Scale);
mult_with_cons(FTdyr,oind,nvertf,Scale);
mult_with_cons(FTdyi,oind,nvertf,Scale);
mult_with_cons(FTdzr,oind,nvertf,Scale);
mult_with_cons(FTdzi,oind,nvertf,Scale);
mult_with_cons(FTdAr,oind,3,Scale);
mult_with_cons(FTdAi,oind,3,Scale);
mult_with_cons(FTdoffr,oind,2,Scale);
mult_with_cons(FTdoffi,oind,2,Scale);
//derivatives wrt Scale
set_submatrix(FTdS,2*ntpoints,nao,FTr,oind,1,cind,obsind);
set_submatrix(FTdS,2*ntpoints,nao,FTi,oind,1,cind+ntpoints,obsind);
}
free(FTr);
free(FTi);
set_submatrix(FTdv,2*ntpoints,3*dn+3+2*nao,FTdxr,oind,nvertf,cind,0);
set_submatrix(FTdv,2*ntpoints,3*dn+3+2*nao,FTdxi,oind,nvertf,cind+ntpoints,0);
set_submatrix(FTdv,2*ntpoints,3*dn+3+2*nao,FTdyr,oind,nvertf,cind,nvertf);
set_submatrix(FTdv,2*ntpoints,3*dn+3+2*nao,FTdyi,oind,nvertf,cind+ntpoints,nvertf);
set_submatrix(FTdv,2*ntpoints,3*dn+3+2*nao,FTdzr,oind,nvertf,cind,2*nvertf);
set_submatrix(FTdv,2*ntpoints,3*dn+3+2*nao,FTdzi,oind,nvertf,cind+ntpoints,2*nvertf);
set_submatrix(FTdv,2*ntpoints,3*dn+3+2*nao,FTdAr,oind,3,cind,3*nvertf);
set_submatrix(FTdv,2*ntpoints,3*dn+3+2*nao,FTdAi,oind,3,cind+ntpoints,3*nvertf);
set_submatrix(FTdv,2*ntpoints,3*dn+3+2*nao,FTdoffr,oind,2,cind,3*nvertf+3+2*obsind);
set_submatrix(FTdv,2*ntpoints,3*dn+3+2*nao,FTdoffi,oind,2,cind+ntpoints,3*nvertf+3+2*obsind);
free(FTdxr);
free(FTdxi);
free(FTdyr);
free(FTdyi);
free(FTdzr);
free(FTdzi);
free(FTdAr);
free(FTdAi);
free(FTdoffr);
free(FTdoffi);
}
free(cumpoints);
}
void main()
{
// int tlist[]={1,2,3,
// 1,3,4,
// 2,4,3,
// 1,2,4}; //4 facets
// double vlist[]={0.0,-2.0,0.0
// ,0.5,0.0,-1.0,
// 0.0,1.0,1.0,
// -3,1,4};
//
// int nvert=4;
// int nfac=4;
int *tlist;
double *vlist;
int nfac,nvert;
char file[]="mshape.txt";
read_shape(file,&tlist,&vlist,&nfac,&nvert,0);
int nobs[]={29,29,29};
int nao=3;
int ntpoints=3*29;
//double E[]={1,0,0};
double E2[]={1,0.1,0.1};
double E[9];
E[0]=1;
E[1]=0;
E[2]=0;
E[6]=1;
E[7]=0;
E[8]=0;
double norm=NORM(E2);
//printf("norm: %f\n",norm);
for(int j=0;j<3;j++)
E[j+3]=E2[j]/norm;
double E0[]={1,0,0,1,0,0,1,0,0};
double TIME[]={0.1,0.2,-0.1};
double distance[]={0.00137879506,0.00137879506,0.00137879506};
double Hdistance[]={0.137879506,0.137879506,0.137879506};
double scale[]={1,1,1};
double up[]={0,0,1,0,0,1,0,0,1};
double *datar=calloc(29,sizeof(double));
double *datai=calloc(29,sizeof(double));
double freqx[]={-1.0000, -0.9300, -0.8600, -0.7900, -0.7200, -0.6500, -0.5800, -0.5100, -0.4400, -0.3700, -0.3000,
-0.2300, -0.1600, -0.0900, -0.0200, 0.0500, 0.1200, 0.1900, 0.2600, 0.3300, 0.4000,
0.4700, 0.5400, 0.6100, 0.6800, 0.7500, 0.8200, 0.8900, 0.9600};
double freqy[]={1.2900, 1.2200, 1.1500, 1.0800, 1.0100, 0.9400, 0.8700, 0.8000, 0.7300, 0.6600,
0.5900, 0.5200, 0.4500, 0.3800, 0.3100, 0.2400, 0.1700, 0.1000, 0.0300, -0.0400, -0.1100,
-0.1800, -0.2500, -0.3200, -0.3900, -0.4600, -0.5300, -0.6000, -0.6700,
};
double freqy2[]={-0.3,0.05};
double freqy3[]={-0.5,-0.1};
double freqx2[]={0.1,0.15};
double angles[]={0.1,0.3,30,0};
double offset[]={0.1,0.2,0.5,-0.1,0,-0.3};
double D[]={1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1};
double *Weight;
double *FT,*FTdv;
FT=calloc(2*ntpoints,sizeof(double));
FTdv=calloc(2*ntpoints*(3*nvert+2*nao+3),sizeof(double));
HFstruct AO;
AO.nhf=3;
AO.nobs=nobs;
AO.datar=calloc(nao,sizeof(double*));
AO.datai=calloc(nao,sizeof(double*));
AO.freqx=calloc(nao,sizeof(double*));
AO.freqy=calloc(nao,sizeof(double*));
AO.WL=calloc(nao,sizeof(double));
AO.WL[0]=350e-6;
AO.WL[1]=350e-6;
AO.WL[2]=350e-6;
AO.datar[0]=datar;
AO.datai[0]=datai;
AO.freqx[0]=freqx;
AO.freqy[0]=freqy;
AO.datar[1]=datar;
AO.datai[1]=datai;
AO.freqx[1]=freqx;
AO.freqy[1]=freqy;
AO.datar[2]=datar;
AO.datai[2]=datai;
AO.freqx[2]=freqx;
AO.freqy[2]=freqy;
AO.E=E;
AO.E0=E0;
AO.TIME=TIME;
AO.distance=distance;
AO.Hdistance=Hdistance;
AO.scalex=scale;
AO.scaley=scale;
AO.up=up;
Calculate_HFs(tlist,vlist,nfac,nvert,angles,&AO,offset,NULL,nvert,nvert,Weight,1024,0.1,100,NULL,FT,FTdv,NULL,1);
//print_matrix(FT,1,2*ntpoints);
//print_matrix(FTdv,2*ntpoints,3*nvert+2*nao+3);
write_matrix_file("/tmp/FT.txt",FT,2*ntpoints,1);
write_matrix_file("/tmp/FTdv.txt",FTdv,2*ntpoints,3*nvert+2*nao+3);
free(FT);
free(FTdv);
free(AO.datar);
free(AO.datai);
free(AO.freqx);
free(AO.freqy);
}