forked from lmarzora/SIA-TP2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimple_perceptron.m
37 lines (32 loc) · 1.18 KB
/
simple_perceptron.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
1;
% entry n * 1
% weights 1 * n
function output = get_output(entry,weights,activation_func)
output = activation_func(weights * entry);
end
% entry n * 1
% weights 1 * n
function weights = update_weights(learning_factor, output, expected_output, weights, entry)
weights = weights + learning_factor*(expected_output - output) * entry';
end
function [weights, output] = simple_perceptron_learn(entries, expected_output, activation_func=@sign, learning_factor=.5,
max_iterations=1000, tolerance=1e-5)
n = length(entries(:,1));
% agrego umbral
entries = [-1*ones(1,2^n);entries];
weights = rand(1,n+1) .- 0.5;
for iteration = 1:max_iterations
for index = randperm(2^n);
entry = entries(:,index);
output(index) = get_output(entry,weights,activation_func);
weights = update_weights(learning_factor, output(index), expected_output(index), weights, entry);
end
if (sum(abs(expected_output-output)) <= tolerance)
'solution found'
return;
end
end
'max iterations reached'
end
function x = id(x)
end