-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathcallback.py
32 lines (25 loc) · 1.07 KB
/
callback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
import torch
import sys
from torch import nn
from os.path import join
from fastNLP.core.callback import Callback
class MyCallback(Callback):
def __init__(self, args):
super(MyCallback, self).__init__()
self.args = args
self.real_step = 0
def on_valid_begin(self):
with open(join(self._trainer.save_path, 'train_info.txt'), 'a') as f:
print('Current step is: {}'.format(self.step), file=f)
def on_step_end(self):
# warm up
if self.step % self.update_every == 0 and self.step > 0:
self.real_step += 1
cur_lr = self.args.max_lr * 100 * min(self.real_step ** (-0.5), self.real_step * self.args.warmup_steps**(-1.5))
for param_group in self.optimizer.param_groups:
param_group['lr'] = cur_lr
if self.real_step % 1000 == 0:
self.pbar.write('Current learning rate is {:.8f}, real_step: {}'.format(cur_lr, self.real_step))
def on_epoch_end(self):
self.pbar.write('Epoch {} is done !!!'.format(self.epoch))