-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDynas.py
488 lines (404 loc) · 20.3 KB
/
Dynas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
import pandas as pd
##############################################
### BUILDING THE STIFFNESS AND MASS MATRIX ###
##############################################
def Matrix3D(Name,Nn):
""" METHOD FOR BUILDING STIFFNESS AND MASS MATRIX FOR 3D FRAME STRUCTURE
Name : File Name (remember to put ".xlsx").
Nn : Number of nodes.
OBS: this method only works if the worksheet is exactly formatted as the file FRAME3D.xlsx"""
File = pd.read_excel(Name)
### BUILDING THE COORDINATE ROW VECTORS (X AND Y FOR EACH NODE) ###
cx = list(File['Cx'])[0:Nn]
cy = list(File['Cy'])[0:Nn]
cz = list(File['Cz'])[0:Nn]
### BUILDING THE MATRIX ID IN NODAL PARTITION (INITIAL AND END NODE OF EACH BAR) ###
### Matrix ID - identify the connection between nodes ###
# connectivities of each bar
Id1 = list(File['barra (nó 1)'])
Id2 = list(File['barra (nó 2)'])
# number of bars
Nb = len(Id1)
# Build a matrix 2xNb were the first row corresponds to the i node and the second to the j node
ID =np.zeros((2,Nb))
# allocating the i node and j node
ID[0,:] = Id1
ID[1,:] = Id2
### ALLOCATE THE PROPERTIES OF THE SECTIONS IN EACH BAR ###
A = list(File['Area(m2)'])
Iz =list(File['Inércia z (m4)'])
Iy =list(File['Inércia y (m4)'])
J = list(File['Torcao (m4)'])
RHO = list(File['Densidade'])
### PROPERTIES OF THE MATERIAL USING SI UNITS ###
E = 28*10**9
G = E / 2.4
### BUILDING THE MATRIX ID IN TERMS OF DEGREES OF FREEDOM ###
### Each node has six degrees of freedom ###
# first row of matrix ID desmembered in the six degrees of freedom per node
lb = ID[0,:]
l1 = lb*6-5
l2 =lb*6-4
l3 =lb*6-3
l4 = lb*6-2
l5 =lb*6-1
l6 =lb*6
# second row of matrix ID desmembered in the six degrees of freedom per node
lb2 =ID[1,:]
l7 = lb2*6-5
l8 =lb2*6-4
l9 =lb2*6-3
l10 = lb2*6-2
l11 =lb2*6-1
l12 =lb2*6
# build the (12 degrees of freedom per element)x(Number of bars) matrix
IDG = np.zeros((12,Nb))
# allocating each degree of freedom in each row of the matrix ID
IDG[0,:]=l1
IDG[1,:]=l2
IDG[2,:]=l3
IDG[3,:]=l4
IDG[4,:]=l5
IDG[5,:]=l6
IDG[6,:]=l7
IDG[7,:]=l8
IDG[8,:]=l9
IDG[9,:]=l10
IDG[10,:]=l11
IDG[11,:]=l12
### BUILDING THE STIFFNESS AND MASS MATRIX OF THE 3D BAR ELEMENT ###
# Size of the matrix is equal to the number of nodes multiply by the number of degrees of freedom per node
K = np.zeros((Nn*6,Nn*6))
M = np.zeros((Nn*6,Nn*6))
for i in range (Nb):
## CAPTURING THE NODES BASED ON THE MATRIX ID IN NODAL PARTITION
k1 = int(ID[0,i] -1)
k2 = int(ID[1,i] -1)
## CALCULATING THE LENGTH OF EACH ELEMENT
Lx = cx[k2] - cx[k1]
Ly = cy[k2] - cy[k1]
Lz = cz[k2] - cz[k1]
L = np.sqrt(Lx**2 + Ly**2 +Lz**2)
## CALCULATING THE DIRECTION COSINES
l = Lx/L
m = Ly/L
n = Lz/L
## DEFINING THE ROTATIONAL MATRIX (ONLY FOR ORTHOGONAL FRAMES)
Cxz = np.sqrt(l**2 + n**2)
if Cxz ==0:
R = np.array([[ 0,m,0, 0,0,0, 0,0,0, 0,0,0],
[-m,0,0, 0,0,0, 0,0,0, 0,0,0],
[ 0,0,1, 0,0,0, 0,0,0, 0,0,0],
[ 0,0,0, 0,m,0, 0,0,0, 0,0,0],
[ 0,0,0,-m,0,0, 0,0,0, 0,0,0],
[ 0,0,0, 0,0,1, 0,0,0, 0,0,0],
[ 0,0,0, 0,0,0, 0,m,0, 0,0,0],
[ 0,0,0, 0,0,0,-m,0,0, 0,0,0],
[ 0,0,0, 0,0,0, 0,0,1, 0,0,0],
[ 0,0,0, 0,0,0, 0,0,0, 0,m,0],
[ 0,0,0, 0,0,0, 0,0,0,-m,0,0],
[ 0,0,0, 0,0,0, 0,0,0, 0,0,1]])
else:
R = np.array([[ l, m, n, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[-l*m/Cxz, Cxz, -m*n/Cxz, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ -n/Cxz, 0, l/Cxz, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, l, m, n, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, -l*m/Cxz, Cxz, -m*n/Cxz, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, -n/Cxz, 0, l/Cxz, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, l, m, n, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, -l*m/Cxz, Cxz, -m*n/Cxz, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, -n/Cxz, 0, l/Cxz, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, l, m, n],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, -l*m/Cxz, Cxz, -m*n/Cxz],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, -n/Cxz, 0, l/Cxz]])
### LOCAL STIFFNESS MATRIX OF THE ELEMENT ###
Ke =np.array(([[ E*A[i]/L, 0, 0, 0, 0, 0,-E*A[i]/L, 0, 0, 0, 0, 0],
[ 0, 12*E*Iz[i]/(L**3), 0, 0, 0, 6*E*Iz[i]/(L**2), 0,-12*E*Iz[i]/(L**3), 0, 0, 0, 6*E*Iz[i]/(L**2)],
[ 0, 0, 12*E*Iy[i]/(L**3), 0,-6*E*Iy[i]/(L**2), 0, 0, 0,-12*E*Iy[i]/(L**3), 0,-6*E*Iy[i]/(L**2), 0],
[ 0, 0, 0, G*J[i]/L, 0, 0, 0, 0, 0,-G*J[i]/L, 0, 0],
[ 0, 0, -6*E*Iy[i]/(L**2), 0, 4*E*Iy[i]/L, 0, 0, 0, 6*E*Iy[i]/(L**2), 0, 2*E*Iy[i]/L, 0],
[ 0, 6*E*Iz[i]/(L**2), 0, 0, 0, 4*E*Iz[i]/L, 0, -6*E*Iz[i]/(L**2), 0, 0, 0, 2*E*Iz[i]/L],
[-E*A[i]/L, 0, 0, 0, 0, 0, E*A[i]/L, 0, 0, 0, 0, 0],
[ 0,-12*E*Iz[i]/(L**3), 0, 0, 0,-6*E*Iz[i]/(L**2), 0, 12*E*Iz[i]/(L**3), 0, 0, 0,-6*E*Iz[i]/(L**2)],
[ 0, 0,-12*E*Iy[i]/(L**3), 0, 6*E*Iy[i]/(L**2), 0, 0, 0, 12*E*Iy[i]/(L**3), 0, 6*E*Iy[i]/(L**2), 0],
[ 0, 0, 0,-G*J[i]/L, 0, 0, 0, 0, 0, G*J[i]/L, 0, 0],
[ 0, 0, -6*E*Iy[i]/(L**2), 0, 2*E*Iy[i]/L, 0, 0, 0, 6*E*Iy[i]/(L**2), 0, 4*E*Iy[i]/L, 0],
[ 0, 6*E*Iz[i]/(L**2), 0, 0, 0, 2*E*Iz[i]/L, 0, -6*E*Iz[i]/(L**2), 0, 0, 0, 4*E*Iz[i]/L]]))
### LOCAL MASS MATRIX OF THE ELEMENT ###
rx = J[i]/A[i]
Me = ((RHO[i]*A[i]*L)/420)*np.array([[140, 0, 0, 0, 0, 0, 70, 0, 0, 0, 0, 0],
[ 0, 156, 0, 0, 0, 22*L, 0, 54, 0, 0, 0, -13*L],
[ 0, 0, 156, 0, -22*L, 0, 0, 0, 54, 0, 13*L, 0],
[ 0, 0, 0, 140*rx, 0, 0, 0, 0, 0, 70*rx, 0, 0],
[ 0, 0,-22*L, 0, 4*L**2, 0, 0, 0,-13*L, 0,-3*L**2, 0],
[ 0, 22*L, 0, 0, 0, 4*L**2, 0, 13*L, 0, 0, 0,-3*L**2],
[ 70, 0, 0, 0, 0, 0, 140, 0, 0, 0, 0, 0],
[ 0, 54, 0, 0, 0, 13*L, 0, 156, 0, 0, 0, -22*L],
[ 0, 0, 54, 0, -13*L, 0, 0, 0, 156, 0, 22*L, 0],
[ 0, 0, 0, 70*rx, 0, 0, 0, 0, 0, 140*rx, 0, 0],
[ 0, 0, 13*L, 0,-3*L**2, 0, 0, 0, 22*L, 0, 4*L**2, 0],
[ 0,-13*L, 0, 0, 0,-3*L**2, 0,-22*L, 0, 0, 0, 4*L**2]])
### ROTATION OF THE MATRICES TO THE GLOBAL REFFERENCE SYSTEM ###
KT = np.dot(np.dot(R.T, Ke),R)
MT = np.dot(np.dot(R.T, Me),R)
### TEMPORARY MATRICES FOR ALLOCATION IN THE GLOBAL MATRIX OF THE STRUCTURE ###
k_temp1 = np.zeros((Nn*6,Nn*6))
m_temp1 = np.zeros((Nn*6,Nn*6))
### ALLOCATION OF THE TEMPORARY MATRICES IN THE GLOBAL MATRIX ###
# Identifying the index os degrees of freedom, to be allocated in the global matrix
j= int(IDG[0,i]-1)
f= int(IDG[5,i])
o= int(IDG[6,i]-1)
p= int(IDG[11,i])
# constructing the temporary matrices to allocate in the global matrix
k_temp1[j:f,j:f] = KT[0:6,0:6]
k_temp1[o:p,j:f] = KT[6:12,0:6]
k_temp1[j:f,o:p] = KT[0:6,6:12]
k_temp1[o:p,o:p] = KT[6:12,6:12]
#Summation including the local matrix in the global matrix
K += k_temp1
#Same procedure applied to the mass matrix
m_temp1[j:f,j:f] = MT[0:6,0:6]
m_temp1[o:p,j:f] = MT[6:12,0:6]
m_temp1[j:f,o:p] = MT[0:6,6:12]
m_temp1[o:p,o:p] = MT[6:12,6:12]
M += m_temp1
return K,M
def Restr(K, M, Nr):
""" M : Mass matrix
K : Stiffness matrix
Nr : List with restricted degrees of freedom
Obs: The damping matrix considered is Rayleigh Damping Matrix, which consists in
a linear combination of M and K. Hence, C is consequence of Mr and Kr"""
### EXCLUDING THE RESTRICTED ROWS AND COLUMNS
Kr_1 = np.delete(K,Nr,0)
Kr = np.delete(Kr_1,Nr,1)
Mr_1 = np.delete(M,Nr,0)
Mr = np.delete(Mr_1,Nr,1)
### EXPORT THE MATRICES TO AN EXCEL FILE
df1 = pd.DataFrame(Mr)
writer = pd.ExcelWriter('matriz de massa.xlsx')
df1.to_excel(writer,'Sheet1', index=False)
writer.save()
df = pd.DataFrame(Kr)
writer = pd.ExcelWriter('matriz de rigidez.xlsx')
df.to_excel(writer,'Sheet1', index=False)
writer.save()
return Kr, Mr
def damping_matrix(wki, wkj, zti, ztj, Mr, Kr):
# given two pairs (zti, wki) and (ztj, wkj) the alpha coefficients are obtained by solving
# the linear system between these two pairs
alpha = la.solve([[1/(2*wki), wki/2], [1/(2*wkj), wkj/2]], [zti, ztj])
# define damping matrix as a linear combination of K and M
Cr = alpha[0]*Mr + alpha[1]*Kr
### EXPORTING TO EXCEL ###
df = pd.DataFrame(Cr)
writer = pd.ExcelWriter('matriz de amortecimento.xlsx')
df.to_excel(writer,'Sheet1', index=False)
writer.save()
return Cr
##############################################
### DEFINING LOADS ###
##############################################
def Seismic3D(Name,Mr,age,t):
"""Name: name of the load matrix
Mr : mass matrix restricted
t : list with discrete time
age: acceleration signal discretized"""
tf = int(len(t))
ngl = int (len(Mr[0,:]))
B = np.zeros((ngl,3))
B[0::6,0] = np.ones(int(ngl/6))
B[1::6,1] = np.ones(int(ngl/6))
B[2::6,2] = np.ones(int(ngl/6))
df = pd.DataFrame(B)
writer = pd.ExcelWriter('matriz B.xlsx')
df.to_excel(writer,'Sheet1', index=False)
writer.save()
F = np.zeros((ngl,tf))
F1 = np.dot(Mr,B)
F = np.dot(F1,age)
plt.figure(1,figsize=(12,4))
plt.plot(t,F[ngl-6 ,:],'b')
plt.xlabel('Tempo (s)'); plt.ylabel('Força (N)')
plt.xlim(0,max(t))
plt.ylim(-max(F[ngl-6,:])*1.1,max(F[ngl-6,:])*1.1)
plt.title('Força no último pavimento na direção 0 DEG')
plt.grid(True)
plt.show()
plt.figure(2,figsize=(12,4))
plt.plot(t,F[ngl-5 ,:],'b')
plt.xlabel('Tempo (s)'); plt.ylabel('Força (N)')
plt.xlim(0,max(t))
plt.ylim(-max(F[ngl-5,:])*1.1,max(F[ngl-5,:])*1.1)
plt.title('Força no último pavimento na direção 90 DEG')
plt.grid(True)
plt.show()
plt.figure(3,figsize=(12,4))
plt.plot(t,F[ngl-4 ,:],'b')
plt.xlabel('Tempo (s)'); plt.ylabel('Força (N)')
plt.xlim(0,max(t))
plt.ylim(-max(F[ngl-4,:])*1.1,max(F[ngl-4,:])*1.1)
plt.title('Força no último pavimento na direção UP')
plt.grid(True)
plt.show()
df = pd.DataFrame(F)
writer = pd.ExcelWriter(f'{Name}.xlsx')
df.to_excel(writer,'Sheet1', index=False)
writer.save()
return F
##############################################
### MODAL ANALYSIS AND NUMERICAL SOLUTIONS ###
##############################################
### MODAL ANALYSIS ###
def modal_analysis(K,M,N):
"""K : Stiffness Matrix
M : Mass Matrix
N : Number of modes desired"""
# solving the eigenvalue/eigenvector problem
D = np.dot(la.inv(M),K)
lambdak, Phi = la.eig(D)
# sorting the eigenvalues and eigenvectors in ascending order
index_lambdak = lambdak.argsort()
lambdak = lambdak[index_lambdak]
Phi = Phi[:, index_lambdak]
# computing the natural angular frequencys and natural frequencys
wk = np.sqrt((lambdak))
fk = wk/(2*np.pi)
for k in range(N):
print(k+1,f"ª Frequência Natural = {fk[k]:3.2f}Hz","\n")
return fk, wk, Phi
########################################################
### NUMERICAL METHODS FOR SOLVING VIBRATION PROBLEMS ###
########################################################
### FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTIONS ###
def finite_diff(F, x0, v0, dt, M, K, C, T):
""" SOLVING DIFFERENTIAL EQUATIONS BY THE FINITE DIFFERENCE METHOD
F = matrix including in each column the load vector along time with step dt
x0 = initial position column vector
v0 = initial velocity column vector
dt = time step (uniform along duration)
M = mass matrix
K = stiffness matrix
C = damping matrix
T = total duration of the analysis (not necessarily the same duration of the load)"""
### INITIAL PARAMETERS ####
# defining the number of steps of analysis = Ns
Ns = int(T/dt)+1
# step t0 (initial acceleration)
ngl = np.shape(F)[0] # captures the number of degrees of freedom
### MODELLING THE DISPLACEMENTS ###
x_before = np.zeros((ngl,1))
# matrix that indicates the displacements, in each degree of freedom, along the time of
# duration of analysis. Each column is a time step
x = np.zeros((ngl, Ns))
x[:,0] = x0[:,0]
### SOLVING INITIAL STEP ###
# initial Force F0 is equivalent to the first column of the matrix of load vectors F along time
aux1 = np.zeros((ngl,1))
aux1[:,0] = np.copy(F[:,0])
aux2 = aux1 - np.dot(C,v0) - np.dot(K,x0)
a0 = np.dot(la.inv(M),aux2)
# step t-1 (before initial condition)
x_before = dt*dt*a0/2 - dt*v0 + x0
# step t+1 (after initial condition)
C1 = M / (dt*dt) + C / (2*dt)
C2 = K - 2*M / (dt*dt)
C3 = M / (dt*dt) - C / (2*dt)
aux3 = aux1 - np.dot(C2, x0) - np.dot(C3, x_before)
x[:,1] = np.dot(la.inv(C1), aux3[:,0])
### INTEGRATING ALONG THE DURATION OS ANALYSIS ###
i = 0
aux4 = np.zeros((ngl,1))
aux5 = np.zeros((ngl,1))
aux6 = np.zeros((ngl,1))
aux7 = np.zeros((ngl,1))
for i in range(1,Ns-1):
aux4[:,0] = np.copy(F[:,i])
aux5[:,0] = np.copy(x[:,i])
aux6[:,0] = np.copy(x[:,i-1])
aux7[:,0] = np.copy(x[:,i+1])
aux7 = np.dot(la.inv(C1), aux4 - np.dot(C2,aux5) - np.dot(C3,aux6))
x[:,i+1] = np.copy(aux7[:,0])
return x
### NEWMARK METHOD FOR NUMERICAL SOLUTIONS ###
def Newmark(Name, Kr,Mr,Cr,F,u0,v0,t):
"""Kr : Restricted Stiffness Matrix
Mr : Restricted Mass Matrix
Cr : Restricted Damping Matrix
F : Load Vector discretized in time
u0 : initial position vector
v0 : initial velocity vector
t : list with time discretized"""
tf = int(len(t))
n = len(F[:,0])
a = np.zeros((n,tf))
v = np.zeros((n,tf))
u = np.zeros((n,tf))
u[:,0] = np.copy(u0[:,0])
v[:,0] = np.copy(v0[:,0])
dt =t[1]-t[0]
## DEFINING PARAMETERS OF THE METHOD ##
delta = 0.5
alfa = 0.25
a0 = 1/(alfa*(dt**2))
a1 = 1/(alfa*dt)
a2 = (1/(2*alfa))-1
a3 = (1-delta)*dt
a4 = delta*dt
a5 = a4*a0
a6 = a4*a1-1
a7 = a4*a2 - a3
## WITH EQUATION OF MOVEMENT, u0 AND v0 YOU CAN OBTAIN THE INITIAL ACCELERATION a[:,0] ##
a[:,0] = np.dot(la.inv(Mr),(F[:,0]-np.dot(Cr,v[:,0])-np.dot(Kr,u[:,0])))
## CONSTANT COEFFICIENT IN THE NUMERICAL METHOD ##
C1 = la.inv((a0*Mr + a5*Cr + Kr))
for i in range(0,tf-1):
aux1 = np.dot(Mr,(a0*u[:,i]+ a1*v[:,i] + a2*a[:,i]))
aux2 = np.dot(Cr,(a5*u[:,i]+ a6*v[:,i] + a7*a[:,i]))
u_aux = F[:,i+1]+ aux1 + aux2
u[:,i+1] = np.dot(C1,u_aux)
v[:,i+1] = a5*(u[:,i+1] - u[:,i]) - a6*v[:,i] - a7*a[:,i]
a[:,i+1] = a0*(u[:,i+1] - u[:,i]) - a1*v[:,i] - a2*a[:,i]
df = pd.DataFrame(u)
writer = pd.ExcelWriter(f'deslocamentos_{Name}.xlsx')
df.to_excel(writer,'Sheet1', index=False)
writer.save()
df = pd.DataFrame(v)
writer = pd.ExcelWriter(f'velocidades_{Name}.xlsx')
df.to_excel(writer,'Sheet1', index=False)
writer.save()
df = pd.DataFrame(a)
writer = pd.ExcelWriter(f'aceleracoes_{Name}.xlsx')
df.to_excel(writer,'Sheet1', index=False)
writer.save()
### PLOT DISPLACEMENTS ON TOP OS BUILDING ###
ngl = np.shape(Mr)[0]
plt.figure(1,figsize=(12,4))
plt.plot(t,100*u[ngl-6 ,:],'b')
plt.xlabel('Tempo (s)'); plt.ylabel('Deslocamento (cm)')
plt.xlim(0,max(t))
plt.ylim(-max(100*u[ngl-6,:])*1.1,max(100*u[ngl-6,:])*1.1)
plt.title('Deslocamento no último pavimento na direção 0 DEG')
plt.grid(True)
plt.show()
plt.figure(2,figsize=(12,4))
plt.plot(t,100*u[ngl-5 ,:],'b')
plt.xlabel('Tempo (s)'); plt.ylabel('Deslocamento (cm)')
plt.xlim(0,max(t))
plt.ylim(-max(100*u[ngl-5,:])*1.1,max(100*u[ngl-5,:])*1.1)
plt.title('Deslocamento no último pavimento na direção 90 DEG')
plt.grid(True)
plt.show()
plt.figure(3,figsize=(12,4))
plt.plot(t,100*u[ngl-4 ,:],'b')
plt.xlabel('Tempo (s)'); plt.ylabel('Deslocamento (cm)')
plt.xlim(0,max(t))
plt.ylim(-max(100*u[ngl-4,:])*1.1,max(100*u[ngl-4,:])*1.1)
plt.title('Deslocamento no último pavimento na direção UP')
plt.grid(True)
plt.show()
return u,v,a