-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConvert Sorted List to Binary Search Tree.java
65 lines (56 loc) · 1.54 KB
/
Convert Sorted List to Binary Search Tree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/*
Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two
subtrees of every node never differ by more than 1.
Example:
Given the sorted linked list: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/ \
-3 9
/ /
-10 5
time = O(nlogn) for each find middle O(n), logn heads
space = O(logn)
*/
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode sortedListToBST(ListNode head) {
if (head == null) {
return null;
}
return bst(head, null);
}
private TreeNode bst(ListNode head, ListNode end) {
ListNode slow = head;
ListNode fast = head;
if (head == end) {
return null;
}
// this is different from normal mid
while (fast.next != end && fast.next.next != end) {
slow = slow.next;
fast = fast.next.next;
}
TreeNode node = new TreeNode(slow.val);
node.left = bst(head, slow);
node.right = bst(slow.next, end);
return node;
}
}