-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdense_retriever.py
302 lines (241 loc) · 11.7 KB
/
dense_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/env python3
# Copyright GC-DPR authors.
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Command line tool to get dense results and validate them
"""
import argparse
import os
import csv
import glob
import json
import gzip
import logging
import pickle
import time
from typing import List, Tuple, Dict, Iterator
import numpy as np
import torch
from torch import Tensor as T
from torch import nn
from dpr.data.qa_validation import calculate_matches
from dpr.models import init_biencoder_components
from dpr.options import add_encoder_params, setup_args_gpu, print_args, set_encoder_params_from_state, \
add_tokenizer_params, add_cuda_params
from dpr.utils.data_utils import Tensorizer
from dpr.utils.model_utils import setup_for_distributed_mode, get_model_obj, load_states_from_checkpoint
from dpr.indexer.faiss_indexers import DenseIndexer, DenseHNSWFlatIndexer, DenseFlatIndexer
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if (logger.hasHandlers()):
logger.handlers.clear()
console = logging.StreamHandler()
logger.addHandler(console)
class DenseRetriever(object):
"""
Does passage retrieving over the provided index and question encoder
"""
def __init__(self, question_encoder: nn.Module, batch_size: int, tensorizer: Tensorizer, index: DenseIndexer):
self.question_encoder = question_encoder
self.batch_size = batch_size
self.tensorizer = tensorizer
self.index = index
def generate_question_vectors(self, questions: List[str]) -> T:
n = len(questions)
bsz = self.batch_size
query_vectors = []
self.question_encoder.eval()
with torch.no_grad():
for j, batch_start in enumerate(range(0, n, bsz)):
batch_token_tensors = [self.tensorizer.text_to_tensor(q) for q in
questions[batch_start:batch_start + bsz]]
q_ids_batch = torch.stack(batch_token_tensors, dim=0).cuda()
q_seg_batch = torch.zeros_like(q_ids_batch).cuda()
q_attn_mask = self.tensorizer.get_attn_mask(q_ids_batch)
_, out, _ = self.question_encoder(q_ids_batch, q_seg_batch, q_attn_mask)
query_vectors.extend(out.cpu().split(1, dim=0))
if len(query_vectors) % 100 == 0:
logger.info('Encoded queries %d', len(query_vectors))
query_tensor = torch.cat(query_vectors, dim=0)
logger.info('Total encoded queries tensor %s', query_tensor.size())
assert query_tensor.size(0) == len(questions)
return query_tensor
def get_top_docs(self, query_vectors: np.array, top_docs: int = 100) -> List[Tuple[List[object], List[float]]]:
"""
Does the retrieval of the best matching passages given the query vectors batch
:param query_vectors:
:param top_docs:
:return:
"""
time0 = time.time()
results = self.index.search_knn(query_vectors, top_docs)
logger.info('index search time: %f sec.', time.time() - time0)
return results
def parse_qa_csv_file(location) -> Iterator[Tuple[str, List[str]]]:
with open(location) as ifile:
reader = csv.reader(ifile, delimiter='\t')
for row in reader:
question = row[0]
answers = eval(row[1])
yield question, answers
def validate(passages: Dict[object, Tuple[str, str]], answers: List[List[str]],
result_ctx_ids: List[Tuple[List[object], List[float]]],
workers_num: int, match_type: str) -> List[List[bool]]:
match_stats = calculate_matches(passages, answers, result_ctx_ids, workers_num, match_type)
top_k_hits = match_stats.top_k_hits
logger.info('Validation results: top k documents hits %s', top_k_hits)
top_k_hits = [v / len(result_ctx_ids) for v in top_k_hits]
logger.info('Validation results: top k documents hits accuracy %s', top_k_hits)
return match_stats.questions_doc_hits
def load_passages(ctx_file: str) -> Dict[object, Tuple[str, str]]:
docs = {}
logger.info('Reading data from: %s', ctx_file)
if ctx_file.endswith(".gz"):
with gzip.open(ctx_file, 'rt') as tsvfile:
reader = csv.reader(tsvfile, delimiter='\t', )
# file format: doc_id, doc_text, title
for row in reader:
if row[0] != 'id':
docs[row[0]] = (row[1], row[2])
else:
with open(ctx_file) as tsvfile:
reader = csv.reader(tsvfile, delimiter='\t', )
# file format: doc_id, doc_text, title
for row in reader:
if row[0] != 'id':
docs[row[0]] = (row[1], row[2])
return docs
def save_results(passages: Dict[object, Tuple[str, str]], questions: List[str], answers: List[List[str]],
top_passages_and_scores: List[Tuple[List[object], List[float]]], per_question_hits: List[List[bool]],
out_file: str
):
# join passages text with the result ids, their questions and assigning has|no answer labels
merged_data = []
assert len(per_question_hits) == len(questions) == len(answers)
for i, q in enumerate(questions):
q_answers = answers[i]
results_and_scores = top_passages_and_scores[i]
hits = per_question_hits[i]
docs = [passages[doc_id] for doc_id in results_and_scores[0]]
scores = [str(score) for score in results_and_scores[1]]
ctxs_num = len(hits)
merged_data.append({
'question': q,
'answers': q_answers,
'ctxs': [
{
'id': results_and_scores[0][c],
'title': docs[c][1],
'text': docs[c][0],
'score': scores[c],
'has_answer': hits[c],
} for c in range(ctxs_num)
]
})
with open(out_file, "w") as writer:
writer.write(json.dumps(merged_data, indent=4) + "\n")
logger.info('Saved results * scores to %s', out_file)
def iterate_encoded_files(vector_files: list) -> Iterator[Tuple[object, np.array]]:
for i, file in enumerate(vector_files):
logger.info('Reading file %s', file)
with open(file, "rb") as reader:
doc_vectors = pickle.load(reader)
for doc in doc_vectors:
db_id, doc_vector = doc
yield db_id, doc_vector
def main(args):
saved_state = load_states_from_checkpoint(args.model_file)
set_encoder_params_from_state(saved_state.encoder_params, args)
tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type, args, inference_only=True)
encoder = encoder.question_model
encoder, _ = setup_for_distributed_mode(encoder, None, args.device, args.n_gpu,
args.local_rank,
args.fp16)
encoder.eval()
# load weights from the model file
model_to_load = get_model_obj(encoder)
logger.info('Loading saved model state ...')
prefix_len = len('question_model.')
question_encoder_state = {key[prefix_len:]: value for (key, value) in saved_state.model_dict.items() if
key.startswith('question_model.')}
model_to_load.load_state_dict(question_encoder_state)
vector_size = model_to_load.get_out_size()
logger.info('Encoder vector_size=%d', vector_size)
if args.hnsw_index:
index = DenseHNSWFlatIndexer(vector_size, args.index_buffer)
else:
index = DenseFlatIndexer(vector_size, args.index_buffer)
retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index)
# get questions & answers
questions = []
question_answers = []
for ds_item in parse_qa_csv_file(args.qa_file):
question, answers = ds_item
questions.append(question)
question_answers.append(answers)
if args.q_encoding_path and not args.re_encode_q and os.path.exists(args.q_encoding_path):
questions_tensor = torch.load(args.q_encoding_path)
else:
questions_tensor = retriever.generate_question_vectors(questions)
if args.encode_q_and_save:
torch.save(questions_tensor, args.q_encoding_path)
# finished encoding, exit
if args.encode_q_and_save:
return
# index all passages
ctx_files_pattern = args.encoded_ctx_file
input_paths = glob.glob(ctx_files_pattern)
index_path = "_".join(input_paths[0].split("_")[:-1])
if args.save_or_load_index and (os.path.exists(index_path) or os.path.exists(index_path + ".index.dpr")):
retriever.index.deserialize_from(index_path)
else:
logger.info('Reading all passages data from files: %s', input_paths)
retriever.index.index_data(input_paths)
if args.save_or_load_index:
retriever.index.serialize(index_path)
# get top k results
top_ids_and_scores = retriever.get_top_docs(questions_tensor.numpy(), args.n_docs)
all_passages = load_passages(args.ctx_file)
if len(all_passages) == 0:
raise RuntimeError('No passages data found. Please specify ctx_file param properly.')
questions_doc_hits = validate(all_passages, question_answers, top_ids_and_scores, args.validation_workers,
args.match)
if args.out_file:
save_results(all_passages, questions, question_answers, top_ids_and_scores, questions_doc_hits, args.out_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
add_encoder_params(parser)
add_tokenizer_params(parser)
add_cuda_params(parser)
parser.add_argument('--qa_file', required=True, type=str, default=None,
help="Question and answers file of the format: question \\t ['answer1','answer2', ...]")
parser.add_argument('--ctx_file', required=True, type=str, default=None,
help="All passages file in the tsv format: id \\t passage_text \\t title")
parser.add_argument('--encoded_ctx_file', type=str, default=None,
help='Glob path to encoded passages (from generate_dense_embeddings tool)')
parser.add_argument('--out_file', type=str, default=None,
help='output .json file path to write results to ')
parser.add_argument('--match', type=str, default='string', choices=['regex', 'string'],
help="Answer matching logic type")
parser.add_argument('--n-docs', type=int, default=200, help="Amount of top docs to return")
parser.add_argument('--validation_workers', type=int, default=16,
help="Number of parallel processes to validate results")
parser.add_argument('--batch_size', type=int, default=32, help="Batch size for question encoder forward pass")
parser.add_argument('--index_buffer', type=int, default=50000,
help="Temporal memory data buffer size (in samples) for indexer")
parser.add_argument("--hnsw_index", action='store_true', help='If enabled, use inference time efficient HNSW index')
parser.add_argument("--save_or_load_index", action='store_true', help='If enabled, save index')
parser.add_argument("--encode_q_and_save", action='store_true')
parser.add_argument("--re_encode_q", action='store_true')
parser.add_argument("--q_encoding_path")
args = parser.parse_args()
assert args.model_file, 'Please specify --model_file checkpoint to init model weights'
setup_args_gpu(args)
print_args(args)
if args.encode_q_and_save and args.q_encoding_path is None:
raise ValueError(f'Requires q_encoding_path when encoding question')
main(args)