-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathforgetful_lstm_cell.py
70 lines (59 loc) · 2.23 KB
/
forgetful_lstm_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import torch.nn as nn
from torch.nn import Parameter
import torch.nn.functional as F
import math
import pdb
TRAIN_DROPOUT_RATE = 0.2
# This is in argparse now
#EVAL_DROPOUT_RATE = 0
class ForgetfulGRUCell(nn.Module):
"""Similar to GRU cell, but allows dropout during inference
Definition:
r = sigma(x_t U_r + h_{t-1} W_r + b_r)
z = sigma(x_t U_z + h_{t-1} W_z + b_z)
hbar = tanh(x_t U_hbar + (r*h_{t-1}) W_hbar + b_hbar)
h_t = dropout(z*h_{t-1} + (1-z)*hbar)
Notation:
x_t: input
h_{t-1}: previous hidden state
h_t: next hidden state
r: reset gate
z: update gate
U: weights operating on x_t
W: weights operating on h_{t-1}
b: bias
hbar: temporary hidden state
sigma: activation function with range [0, 1]
tanh: activation function with range [-1, 1]
"""
def __init__(self, input_size, hidden_size, args):
super(ForgetfulGRUCell, self).__init__()
self.args = args
self.input_size = input_size
self.hidden_size = hidden_size
self.U_r = Parameter(torch.Tensor(input_size, hidden_size))
self.W_r = Parameter(torch.Tensor(hidden_size, hidden_size))
self.b_r = Parameter(torch.Tensor(hidden_size))
self.U_z = Parameter(torch.Tensor(input_size, hidden_size))
self.W_z = Parameter(torch.Tensor(hidden_size, hidden_size))
self.b_z = Parameter(torch.Tensor(hidden_size))
self.U_hbar = Parameter(torch.Tensor(input_size, hidden_size))
self.W_hbar = Parameter(torch.Tensor(hidden_size, hidden_size))
self.b_hbar = Parameter(torch.Tensor(hidden_size))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
weight.data.uniform_(-stdv, stdv)
def forward(self, x, h):
r = F.sigmoid(x.mm(self.U_r) + h.mm(self.W_r) + self.b_r)
z = F.sigmoid(x.mm(self.U_z) + h.mm(self.W_z) + self.b_z)
hbar = F.tanh(x.mm(self.U_hbar) + (r * h).mm(self.W_hbar) + self.b_hbar)
hnext = z * h + (1-z) * hbar
# Use different dropout depending on train or eval
if self.training:
hnext = F.dropout(hnext, p = TRAIN_DROPOUT_RATE, training = True)
else:
hnext = F.dropout(hnext, p = self.args.eval_dropout, training = True)
return hnext