-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathparse.py
287 lines (244 loc) · 11.9 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import bs4
import datetime
import os
import pandas as pd
import re
# HTML files will be parsed from the following directory
html_path = './html/'
# Output consolidated files will be generated in the following directory
today = datetime.date.today()
today = today.strftime('%Y-%m-%d')
output_path = './output/' + today + '/'
# Main parsing logic
url_pattern = 'http://bilans-ges.ademe.fr/fr/bilanenligne/detail/index/idElement/%d/back/bilans'
raw_codes_pattern = re.compile('([0-9]{9}) - (.+) \\(([0-9]{3,5}[A-Z])\\)( - ([^\\(\\)]+) \\(([^\\(\\)]+)\\))?')
keys = {
'Code(s) NAF :': 'legal_units',
'Descriptif Sommaire de l\'activité :': 'organization_description',
'Effectifs': 'staff',
'Mode de consolidation': 'consolidation_method',
'Nombre d\'agents': 'staff',
'Nombre de salariés': 'staff',
'Population :': 'population',
'Type :': 'organization_type',
'Type de collectivité :': 'collectivity_type'
}
text_ids = {
'bloc-pa-scope1': 'Plan d\'action Scope 1',
'bloc-pa-scope2': 'Plan d\'action Scope 2',
'bloc-pa-scope3': 'Plan d\'action Scope 3',
'presentation-entreprise': 'Présentation de l\'organisation',
'politique-developpement-durable': 'Politique de développement durable',
'bloc-m-scope1': 'Méthodologie Scope 1',
'bloc-m-scope2': 'Méthodologie Scope 2',
'bloc-m-scope3': 'Méthodologie Scope 3',
'bloc-m-incertitude': 'Méthodologie Incertitudes',
'bloc-m-exclusion': 'Méthodologie Exclusions',
'bloc-m-source': 'Méthodologie Sources',
'bloc-m-recalcul': 'Méthodologie Recalcul',
'bloc-m-siret': 'Méthodologie SIRET',
}
reductions = {
'reductions_scope_1_2': re.compile('.*attendu pour les scopes 1 et 2 est de ([0-9]+\\.[0-9]+) tCO2e.*'),
'reductions_scope_1': re.compile('.*attendu pour le scope 1 est de ([0-9]+\\.[0-9]+) tCO2e.*'),
'reductions_scope_2': re.compile('.*attendu pour le scope 2 est de ([0-9]+\\.[0-9]+) tCO2e.*'),
'reductions_scope_3': re.compile('.*attendu pour le scope 3 est de ([0-9]+\\.[0-9]+) tCO2e.*'),
}
print('INFO: Started.')
def get_value(cell):
value = cell.text.strip()
if value == 'nc':
value = ''
if value != '':
value = float(value.replace(',', '.'))
return value
def clean_string(value):
result = value.strip()
return result
def find_text(html_content, div_id):
div = html_content.find('div', {'id': div_id})
if div is None:
return ''
else:
if div_id == 'politique-developpement-durable' or div_id == 'presentation-entreprise':
div = div.find('div')
for p in div.findAll('p'):
if p.text.strip() == '':
p.extract()
result = '\n'.join([str(child) for child in div.contents]).strip()
result = re.sub(r'\n+', "\n", result)
return result
def load_emissions_table(table, assessment_index, assessment_type):
result = []
totals = {1: 0, 2: 0, 3: 0}
for row in table.findAll('tr'):
cells = row.findAll(['td', 'th'])
if len(cells) == 7 and re.match('[0-9]+', cells[0].text.strip()):
scope_item_id = int(cells[0].text.strip())
emission = {
'assessment_id': assessment_index,
'type': assessment_type,
'scope_item_id': scope_item_id,
'co2': get_value(cells[1]),
'ch4': get_value(cells[2]),
'n2o': get_value(cells[3]),
'other': get_value(cells[4]),
'total': get_value(cells[5]),
'co2_biogenic': get_value(cells[6]),
}
if emission['total'] != '':
total = emission['total']
if scope_item_id <= 5:
totals[1] += total
elif scope_item_id <= 7:
totals[2] += total
else:
totals[3] += total
if emission['total'] != '' or emission['co2_biogenic'] != '':
result.append(emission)
return result, totals
def extract_codes(codes_text):
codes_text = re.sub('\s+', '', codes_text)
codes_text = re.sub('-+', '', codes_text)
siret_codes = re.findall(r"[0-9]{14}", codes_text)
for siret_code in siret_codes:
codes_text = codes_text.replace(siret_code, '')
siren_codes = re.findall(r"[0-9]{9}", codes_text)
siren_codes = siren_codes + [siret_code[:9] for siret_code in siret_codes]
return siren_codes, siret_codes
class Dataset:
def __init__(self):
self.collections = {
'assessments': [],
'emissions': [],
'legal_units': [],
'texts': [],
}
def save(self, path):
emissions = pd.DataFrame(self.collections['emissions'])
emissions = emissions[['assessment_id', 'type', 'scope_item_id', 'co2', 'ch4', 'n2o', 'other', 'total', 'co2_biogenic']]
emissions.to_csv(path + 'emissions.csv', index=False, encoding='UTF-8')
assessments = pd.DataFrame(self.collections['assessments'])
assessments = assessments[['id', 'organization_name', 'organization_description', 'organization_type',
'collectivity_type', 'staff', 'population', 'consolidation_method', 'reporting_year',
'total_scope_1', 'total_scope_2', 'total_scope_3',
'reference_year', 'action_plan',
'reductions_scope_1_2', 'reductions_scope_1', 'reductions_scope_2', 'reductions_scope_3',
'is_draft', 'source_url']]
assessments.to_csv(path + 'assessments.csv', index=False, encoding='UTF-8')
legal_units = pd.DataFrame(self.collections['legal_units'])
legal_units = legal_units[['assessment_id', 'legal_unit_id_type', 'legal_unit_id']]
legal_units = legal_units.drop_duplicates()
legal_units.to_csv(path + 'legal_units.csv', index=False, encoding='UTF-8')
texts = pd.DataFrame(self.collections['texts'])
texts.to_csv(path + 'texts.csv', index=False, encoding='UTF-8')
scope_items = pd.read_csv('scope_items.csv', index_col=False, encoding='UTF-8')
scope_items.to_csv(path + 'scope_items.csv', index=False, encoding='UTF-8')
with pd.ExcelWriter(path + 'bilans-ges.xlsx') as writer:
scope_items.to_excel(writer, sheet_name='scope_items', index=False)
assessments.to_excel(writer, sheet_name='assessments', index=False)
legal_units.to_excel(writer, sheet_name='legal_units', index=False)
emissions.to_excel(writer, sheet_name='emissions', index=False)
texts.to_excel(writer, sheet_name='texts', index=False)
class Database:
def __init__(self):
self.ds = Dataset()
def append(self, collection, item):
self.ds.collections[collection].append(item)
def add_all(self, collection, items):
self.ds.collections[collection] += items
def save(self):
self.ds.save(output_path)
print('INFO: Checking output directory.')
if not os.path.exists(output_path):
os.makedirs(output_path)
print('INFO: Processing files.')
db = Database()
filename_pattern = re.compile(r'([0-9]+).html')
filenames = [x for x in os.listdir(html_path) if filename_pattern.match(x) is not None]
indexes = sorted([int(filename_pattern.match(x).groups()[0]) for x in filenames])
for index in indexes:
filename = html_path + '%d.html' % index
with open(filename, encoding='utf-8') as file:
print('DEBUG: Processing file %s.' % filename)
content = bs4.BeautifulSoup(file, 'lxml')
assessment = {
'id': index,
'source_url': url_pattern % index,
'organization_name': clean_string(content.find('div', {'id': 'nomEntreprise'}).text),
'reporting_year': int(content.find('div', {'class': 'anneefiche'}).text.strip()),
'is_draft': 'Non',
}
reference = content.find('label', {'for': 'BGS_IS_ANNEE_REFERENCE_CALCULE'})
if reference is not None:
assessment['reference_year'] = int(reference.next_sibling.strip().replace('01/01/', ''))
# Texts
has_action_plan = False
for text_div_id in sorted(text_ids):
text = find_text(content, text_div_id)
if text != '':
db.append('texts', {'assessment_id': index, 'key': text_ids[text_div_id], 'value': text})
if 'bloc-pa-scope' in text_div_id:
has_action_plan = True
if text_div_id == 'bloc-m-siret':
siren_codes, siret_codes = extract_codes(text)
for siren_code in siren_codes:
db.append('legal_units', {
'assessment_id': index,
'legal_unit_id_type': 'SIREN',
'legal_unit_id': siren_code,
})
for siret_code in siret_codes:
db.append('legal_units', {
'assessment_id': index,
'legal_unit_id_type': 'SIRET',
'legal_unit_id': siret_code,
})
assessment['action_plan'] = 'Oui' if has_action_plan else 'Non'
# Reductions
reductions_p = content.find_all('p', {'class': 'pBold'})
reductions_text = ''.join([p.text for p in reductions_p])
reductions_text = reductions_text.replace("\n", '')
for reduction_key, reduction_pattern in reductions.items():
reduction_match = reduction_pattern.match(reductions_text)
if reduction_match is not None:
assessment[reduction_key] = float(reduction_match.groups()[0])
# Others
identity_card = content.find('div', {'id': 'fiche-identite'})
identity_table = identity_card.find('td', text=re.compile('Type :')).findParent('table')
for identity_row in identity_table.findAll('tr'):
identity_key = identity_row.findAll('td')[0].text.strip()
identity_value = identity_row.findAll('td')[1].text
assessment[keys[identity_key]] = clean_string(identity_value)
if 'legal_units' in assessment:
for line in assessment['legal_units'].splitlines():
if len(line.strip()) > 0:
match = raw_codes_pattern.match(line.strip())
if match is not None:
db.append('legal_units', {
'assessment_id': index,
'legal_unit_id_type': 'SIREN',
'legal_unit_id': match.groups()[0],
})
else:
print('ERROR: Invalid legal unit string format "%s".' % line)
del assessment['legal_units']
if 'staff' in assessment and assessment['staff'] != '':
assessment['staff'] = int(assessment['staff'])
if 'population' in assessment and assessment['population'] != '':
assessment['population'] = int(assessment['population'])
current_table = content.find('table', {'id': 'tableauAnneeDeclaration'})
if current_table is not None:
current_emissions, current_totals = load_emissions_table(current_table, index, 'Déclaration')
db.add_all('emissions', current_emissions)
assessment['total_scope_1'] = current_totals[1]
assessment['total_scope_2'] = current_totals[2]
assessment['total_scope_3'] = current_totals[3]
reference_table = content.find('table', {'id': 'tableauAnneeReference'})
if reference_table is not None:
reference_emissions, reference_totals = load_emissions_table(reference_table, index, 'Référence')
db.add_all('emissions', reference_emissions)
db.append('assessments', assessment)
print('INFO: Converting and saving to CSV/XLSX tables.')
db.save()
print('INFO: Finished.')