-
Notifications
You must be signed in to change notification settings - Fork 256
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Can I use Azure open AI #29
Comments
Can you share the full code that you're using? We still currently depend on OpenAI for embeddings if you're using We don't currently support >2 models! More research is required here. |
That totally explains why it's asking for OpenAI API Key even though I've set my correct api keys for both, strong and weak models. Is there a way to use an embedding model from Azure OpenAI instead? I can share the code I'm using for this: # Weak model secrets
os.environ["GROQ_API_KEY"] = "<groq-api-key>"
# Strong model secrets
os.environ["AZURE_API_KEY"] = "<azure-openai-api-key>"
os.environ["AZURE_API_BASE"] = "<azure-openai-endpoint>"
os.environ["AZURE_API_VERSION"] = "<azure-openai-api-version>"
# Import the controller
from routellm.controller import Controller
# Create the controller
# I've used the prefix azure/ according to the LiteLLM docs
# https://litellm.vercel.app/docs/providers/azure
client = Controller(
routers = ["mf"],
strong_model = "azure/gpt-4o",
weak_model = "groq/llama3-8b-8192"
)
# Make a request
response = client.chat.completions.create(
model = "router-mf-0.11593",
messages = [
{"role":"user", "content":"Hello!"}
]
)
# AI Message
message = response.choices[0].message.content
# Model used
model_used = response.model
print(f"Model used: {model_used}")
print(f"Response: {message}") It throws this error: {
"name": "AuthenticationError",
"message": "Error code: 401 - {'error': {'message': 'Incorrect API key provided: ********************. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}",
"stack": "---------------------------------------------------------------------------
AuthenticationError Traceback (most recent call last)
Cell In[9], line 1
----> 1 response = client.chat.completions.create(
2 model = \"router-mf-0.11593\",
3 messages = [
4 {\"role\":\"user\", \"content\":\"Hola\"}
5 ]
6 )
8 message = response.choices[0].message.content
9 used_model = response.model
File ~/.local/lib/python3.10/site-packages/routellm/controller.py:150, in Controller.completion(self, router, threshold, **kwargs)
147 router, threshold = self._parse_model_name(kwargs[\"model\"])
149 self._validate_router_threshold(router, threshold)
--> 150 kwargs[\"model\"] = self._get_routed_model_for_completion(
151 kwargs[\"messages\"], router, threshold
152 )
153 return completion(api_base=self.api_base, api_key=self.api_key, **kwargs)
File ~/.local/lib/python3.10/site-packages/routellm/controller.py:111, in Controller._get_routed_model_for_completion(self, messages, router, threshold)
105 def _get_routed_model_for_completion(
106 self, messages: list, router: str, threshold: float
107 ):
108 # Look at the last turn for routing.
109 # Our current routers were only trained on first turn data, so more research is required here.
110 prompt = messages[-1][\"content\"]
--> 111 routed_model = self.routers[router].route(prompt, threshold, self.model_pair)
113 self.model_counts[router][routed_model] += 1
115 return routed_model
File ~/.local/lib/python3.10/site-packages/routellm/routers/routers.py:42, in Router.route(self, prompt, threshold, routed_pair)
41 def route(self, prompt, threshold, routed_pair):
---> 42 if self.calculate_strong_win_rate(prompt) >= threshold:
43 return routed_pair.strong
44 else:
File ~/.local/lib/python3.10/site-packages/routellm/routers/routers.py:239, in MatrixFactorizationRouter.calculate_strong_win_rate(self, prompt)
238 def calculate_strong_win_rate(self, prompt):
--> 239 winrate = self.model.pred_win_rate(
240 self.strong_model_id, self.weak_model_id, prompt
241 )
242 return winrate
File ~/.local/lib/python3.10/site-packages/torch/utils/_contextlib.py:116, in context_decorator.<locals>.decorate_context(*args, **kwargs)
113 @functools.wraps(func)
114 def decorate_context(*args, **kwargs):
115 with ctx_factory():
--> 116 return func(*args, **kwargs)
File ~/.local/lib/python3.10/site-packages/routellm/routers/matrix_factorization/model.py:124, in MFModel.pred_win_rate(self, model_a, model_b, prompt)
122 @torch.no_grad()
123 def pred_win_rate(self, model_a, model_b, prompt):
--> 124 logits = self.forward([model_a, model_b], prompt)
125 winrate = torch.sigmoid(logits[0] - logits[1]).item()
126 return winrate
File ~/.local/lib/python3.10/site-packages/routellm/routers/matrix_factorization/model.py:113, in MFModel.forward(self, model_id, prompt)
109 model_embed = self.P(model_id)
110 model_embed = torch.nn.functional.normalize(model_embed, p=2, dim=1)
112 prompt_embed = (
--> 113 OPENAI_CLIENT.embeddings.create(input=[prompt], model=self.embedding_model)
114 .data[0]
115 .embedding
116 )
117 prompt_embed = torch.tensor(prompt_embed, device=self.get_device())
118 prompt_embed = self.text_proj(prompt_embed)
File ~/.local/lib/python3.10/site-packages/openai/resources/embeddings.py:114, in Embeddings.create(self, input, model, dimensions, encoding_format, user, extra_headers, extra_query, extra_body, timeout)
108 embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
109 base64.b64decode(data), dtype=\"float32\"
110 ).tolist()
112 return obj
--> 114 return self._post(
115 \"/embeddings\",
116 body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
117 options=make_request_options(
118 extra_headers=extra_headers,
119 extra_query=extra_query,
120 extra_body=extra_body,
121 timeout=timeout,
122 post_parser=parser,
123 ),
124 cast_to=CreateEmbeddingResponse,
125 )
File ~/.local/lib/python3.10/site-packages/openai/_base_client.py:1259, in SyncAPIClient.post(self, path, cast_to, body, options, files, stream, stream_cls)
1245 def post(
1246 self,
1247 path: str,
(...)
1254 stream_cls: type[_StreamT] | None = None,
1255 ) -> ResponseT | _StreamT:
1256 opts = FinalRequestOptions.construct(
1257 method=\"post\", url=path, json_data=body, files=to_httpx_files(files), **options
1258 )
-> 1259 return cast(ResponseT, self.request(cast_to, opts, stream=stream, stream_cls=stream_cls))
File ~/.local/lib/python3.10/site-packages/openai/_base_client.py:936, in SyncAPIClient.request(self, cast_to, options, remaining_retries, stream, stream_cls)
927 def request(
928 self,
929 cast_to: Type[ResponseT],
(...)
934 stream_cls: type[_StreamT] | None = None,
935 ) -> ResponseT | _StreamT:
--> 936 return self._request(
937 cast_to=cast_to,
938 options=options,
939 stream=stream,
940 stream_cls=stream_cls,
941 remaining_retries=remaining_retries,
942 )
File ~/.local/lib/python3.10/site-packages/openai/_base_client.py:1040, in SyncAPIClient._request(self, cast_to, options, remaining_retries, stream, stream_cls)
1037 err.response.read()
1039 log.debug(\"Re-raising status error\")
-> 1040 raise self._make_status_error_from_response(err.response) from None
1042 return self._process_response(
1043 cast_to=cast_to,
1044 options=options,
(...)
1048 retries_taken=options.get_max_retries(self.max_retries) - retries,
1049 )
AuthenticationError: Error code: 401 - {'error': {'message': 'Incorrect API key provided: ********************. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}"
} |
I have same error while using Azure OpenAI URL and Key. For weak model, I am using an internal API and key. Is there any work around to use custom base URLs and keys for Strong and Weak models? |
I was digging into the source code and found out that the file inside For my use case, I've only change it to AzureOpenAI and modified the embedding model deployment name to I need to some testings in order to see if this works (the router, not the embedding model, that works good) but I think would be good to be able to choose an embedding model of our preference into the Controller. |
Yes, this makes perfect sense. We are looking into other embedding models at the moment and will release an update soon! |
I am trying to use azure openai but I got this error.
raise OpenAIError( openai.OpenAIError: The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable
Also can we use multiple models instead of only two strong and weak model?
The text was updated successfully, but these errors were encountered: