-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotebook.py
466 lines (314 loc) · 11.7 KB
/
notebook.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# edited/added
import pandas as pd
food_consumption = pd.read_csv("food_consumption.csv")
# Import numpy with alias np
import numpy as np
# Filter for Belgium
be_consumption = food_consumption[food_consumption['country'] == 'Belgium']
# Filter for USA
usa_consumption = food_consumption[food_consumption['country'] == 'USA']
# Calculate mean and median consumption in Belgium
print(np.mean(be_consumption['consumption']))
print(np.median(be_consumption['consumption']))
# Calculate mean and median consumption in USA
print(np.mean(usa_consumption['consumption']))
print(np.median(usa_consumption['consumption']))
# Import numpy as np
import numpy as np
# Subset for Belgium and USA only
be_and_usa = food_consumption[(food_consumption['country'] == "Belgium") | (food_consumption['country'] == 'USA')]
# Group by country, select consumption column, and compute mean and median
print(be_and_usa.groupby('country')['consumption'].agg([np.mean, np.median]))
# Import matplotlib.pyplot with alias plt
import matplotlib.pyplot as plt
# Subset for food_category equals rice
rice_consumption = food_consumption[food_consumption['food_category'] == 'rice']
# Histogram of co2_emission for rice and show plot
rice_consumption['co2_emission'].hist()
plt.show()
# Subset for food_category equals rice
rice_consumption = food_consumption[food_consumption['food_category'] == 'rice']
# Calculate mean and median of co2_emission with .agg()
print(rice_consumption['co2_emission'].agg([np.mean, np.median]))
# Calculate the quartiles of co2_emission
print(np.quantile(food_consumption['co2_emission'], [0, 0.25, 0.5, 0.75, 1]))
# Calculate the quintiles of co2_emission
print(np.quantile(food_consumption['co2_emission'], [0, 0.2, 0.4, 0.6, 0.8, 1]))
# Calculate the deciles of co2_emission
print(np.quantile(food_consumption['co2_emission'], np.linspace(0, 1, 11)))
# Print variance and sd of co2_emission for each food_category
print(food_consumption.groupby('food_category')['co2_emission'].agg([np.var, np.std]))
# Import matplotlib.pyplot with alias plt
import matplotlib.pyplot as plt
# Create histogram of co2_emission for food_category 'beef'
food_consumption[food_consumption['food_category'] == 'beef']['co2_emission'].hist()
# Show plot
plt.show()
# Create histogram of co2_emission for food_category 'eggs'
food_consumption[food_consumption['food_category'] == 'eggs']['co2_emission'].hist()
# Show plot
plt.show()
# Calculate total co2_emission per country: emissions_by_country
emissions_by_country = food_consumption.groupby('country')['co2_emission'].sum()
print(emissions_by_country)
# Compute the first and third quantiles and IQR of emissions_by_country
q1 = np.quantile(emissions_by_country, 0.25)
q3 = np.quantile(emissions_by_country, 0.75)
iqr = q3 - q1
# Calculate the lower and upper cutoffs for outliers
lower = q1 - 1.5 * iqr
upper = q3 + 1.5 * iqr
# Subset emissions_by_country to find outliers
outliers = emissions_by_country[(emissions_by_country < lower) | (emissions_by_country > upper)]
print(outliers)
# edited/added
amir_deals = pd.read_csv("amir_deals.csv")
# Count the deals for each product
counts = amir_deals['product'].value_counts()
print(counts)
# Count the deals for each product
counts = amir_deals['product'].value_counts()
# Calculate probability of picking a deal with each product
probs = counts / amir_deals.shape[0]
print(probs)
# Set random seed
np.random.seed(24)
# Sample 5 deals without replacement
sample_without_replacement = amir_deals.sample(5)
print(sample_without_replacement)
# Set random seed
np.random.seed(24)
# Sample 5 deals with replacement
sample_with_replacement = amir_deals.sample(5, replace=True)
print(sample_with_replacement)
# edited/added
restaurant_groups = pd.read_csv("restaurant_groups.csv")
# Create a histogram of restaurant_groups and show plot
restaurant_groups['group_size'].hist(bins=np.linspace(2,6,5))
plt.show()
# Create probability distribution
size_dist = restaurant_groups['group_size'].value_counts() / restaurant_groups.shape[0]
# Reset index and rename columns
size_dist = size_dist.reset_index()
size_dist.columns = ['group_size', 'prob']
print(size_dist)
# Expected value
expected_value = np.sum(size_dist['group_size'] * size_dist['prob'])
print(expected_value)
# Subset groups of size 4 or more
groups_4_or_more = size_dist[size_dist['group_size'] >= 4]
# Sum the probabilities of groups_4_or_more
prob_4_or_more = np.sum(groups_4_or_more['prob'])
print(prob_4_or_more)
# Min and max wait times for back-up that happens every 30 min
min_time = 0
max_time = 30
# Import uniform from scipy.stats
from scipy.stats import uniform
# Calculate probability of waiting less than 5 mins
prob_less_than_5 = uniform.cdf(5, min_time, max_time)
print(prob_less_than_5)
# Calculate probability of waiting more than 5 mins
prob_greater_than_5 = 1 - uniform.cdf(5, min_time, max_time)
print(prob_greater_than_5)
# Calculate probability of waiting 10-20 mins
prob_between_10_and_20 = uniform.cdf(20, min_time, max_time) - uniform.cdf(10, min_time, max_time)
print(prob_between_10_and_20)
# Set random seed to 334
np.random.seed(334)
# Import uniform
from scipy.stats import uniform
# Generate 1000 wait times between 0 and 30 mins
wait_times = uniform.rvs(0, 30, size=1000)
print(wait_times)
# Create a histogram of simulated times and show plot
plt.hist(wait_times)
plt.show()
# Import binom from scipy.stats
from scipy.stats import binom
# Set random seed to 10
np.random.seed(10)
# Simulate a single deal
print(binom.rvs(1, 0.3, size=1))
# Simulate 1 week of 3 deals
print(binom.rvs(3, 0.3, size=1))
# Simulate 52 weeks of 3 deals
deals = binom.rvs(3, 0.3, size=52)
# Print mean deals won per week
print(np.mean(deals))
# Probability of closing 3 out of 3 deals
prob_3 = binom.pmf(3, 3, 0.3)
print(prob_3)
# Probability of closing <= 1 deal out of 3 deals
prob_less_than_or_equal_1 = binom.cdf(1, 3, 0.3)
print(prob_less_than_or_equal_1)
# Probability of closing > 1 deal out of 3 deals
prob_greater_than_1 = 1 - binom.cdf(1, 3, 0.3)
print(prob_greater_than_1)
# Expected number won with 30% win rate
won_30pct = 3 * 0.3
print(won_30pct)
# Expected number won with 25% win rate
won_25pct = 3 * 0.25
print(won_25pct)
# Expected number won with 35% win rate
won_35pct = 3 * 0.35
print(won_35pct)
# Histogram of amount with 10 bins and show plot
amir_deals['amount'].hist(bins=10)
plt.show()
# edited/added
from scipy.stats import norm
# Probability of deal < 7500
prob_less_7500 = norm.cdf(7500, 5000, 2000)
print(prob_less_7500)
# Probability of deal > 1000
prob_over_1000 = 1 - norm.cdf(1000, 5000, 2000)
print(prob_over_1000)
# Probability of deal between 3000 and 7000
prob_3000_to_7000 = norm.cdf(7000, 5000, 2000) - norm.cdf(3000, 5000, 2000)
print(prob_3000_to_7000)
# Calculate amount that 25% of deals will be less than
pct_25 = norm.ppf(0.25, 5000, 2000)
print(pct_25)
# Calculate new average amount
new_mean = 5000 * 1.2
# Calculate new standard deviation
new_sd = 2000 * 1.3
# Simulate 36 new sales
new_sales = norm.rvs(new_mean, new_sd, size=36)
# Create histogram and show
plt.hist(new_sales)
plt.show()
# Create a histogram of num_users and show
amir_deals['num_users'].hist()
plt.show()
# Set seed to 104
np.random.seed(104)
# Sample 20 num_users with replacement from amir_deals
samp_20 = amir_deals['num_users'].sample(20, replace=True)
# Take mean of samp_20
print(np.mean(samp_20))
# Set seed to 104
np.random.seed(104)
# Sample 20 num_users with replacement from amir_deals and take mean
samp_20 = amir_deals['num_users'].sample(20, replace=True)
np.mean(samp_20)
sample_means = []
# Loop 100 times
for i in range(100):
# Take sample of 20 num_users
samp_20 = amir_deals['num_users'].sample(20, replace=True)
# Calculate mean of samp_20
samp_20_mean = np.mean(samp_20)
# Append samp_20_mean to sample_means
sample_means.append(samp_20_mean)
print(sample_means)
# Set seed to 104
np.random.seed(104)
sample_means = []
# Loop 100 times
for i in range(100):
# Take sample of 20 num_users
samp_20 = amir_deals['num_users'].sample(20, replace=True)
# Calculate mean of samp_20
samp_20_mean = np.mean(samp_20)
# Append samp_20_mean to sample_means
sample_means.append(samp_20_mean)
# Convert to Series and plot histogram
sample_means_series = pd.Series(sample_means)
sample_means_series.hist()
# Show plot
plt.show()
# edited/added
all_deals = pd.read_csv("all_deals.csv")
# Set seed to 321
np.random.seed(321)
sample_means = []
# Loop 30 times to take 30 means
for i in range(30):
# Take sample of size 20 from num_users col of all_deals with replacement
cur_sample = all_deals['num_users'].sample(20, replace=True)
# Take mean of cur_sample
cur_mean = np.mean(cur_sample)
# Append cur_mean to sample_means
sample_means.append(cur_mean)
# Print mean of sample_means
print(np.mean(sample_means))
# Print mean of num_users in amir_deals
print(np.mean(amir_deals['num_users']))
# Import poisson from scipy.stats
from scipy.stats import poisson
# Probability of 5 responses
prob_5 = poisson.pmf(5, 4)
print(prob_5)
# Import poisson from scipy.stats
from scipy.stats import poisson
# Probability of 5 responses
prob_coworker = poisson.pmf(5, 5.5)
print(prob_coworker)
# Import poisson from scipy.stats
from scipy.stats import poisson
# Probability of 2 or fewer responses
prob_2_or_less = poisson.cdf(2, 4)
print(prob_2_or_less)
# Import poisson from scipy.stats
from scipy.stats import poisson
# Probability of > 10 responses
prob_over_10 = 1 - poisson.cdf(10, 4)
print(prob_over_10)
# Import expon from scipy.stats
from scipy.stats import expon
# Print probability response takes < 1 hour
print(expon.cdf(1, scale=2.5))
# Import expon from scipy.stats
from scipy.stats import expon
# Print probability response takes > 4 hours
print(1 - expon.cdf(4, scale=2.5))
# Import expon from scipy.stats
from scipy.stats import expon
# Print probability response takes 3-4 hours
print(expon.cdf(4, scale=2.5) - expon.cdf(3, scale=2.5))
# edited/added
import seaborn as sns
world_happiness = pd.read_csv("world_happiness.csv", index_col = 0)
# Create a scatterplot of happiness_score vs. life_exp and show
sns.scatterplot(x='life_exp', y='happiness_score', data=world_happiness)
# Show plot
plt.show()
# Create scatterplot of happiness_score vs life_exp with trendline
sns.lmplot(x='life_exp', y='happiness_score', data=world_happiness, ci=None)
# Show plot
plt.show()
# Correlation between life_exp and happiness_score
cor = world_happiness['life_exp'].corr(world_happiness['happiness_score'])
print(cor)
# Scatterplot of gdp_per_cap and life_exp
sns.scatterplot(x='gdp_per_cap', y='life_exp', data=world_happiness)
# Show plot
plt.show()
# Correlation between gdp_per_cap and life_exp
cor = world_happiness['gdp_per_cap'].corr(world_happiness['life_exp'])
print(cor)
# Scatterplot of happiness_score vs. gdp_per_cap
sns.scatterplot(x='gdp_per_cap', y='happiness_score', data=world_happiness)
plt.show()
# Calculate correlation
cor = world_happiness['gdp_per_cap'].corr(world_happiness['happiness_score'])
print(cor)
# Create log_gdp_per_cap column
world_happiness['log_gdp_per_cap'] = np.log(world_happiness['gdp_per_cap'])
# Scatterplot of happiness_score vs. log_gdp_per_cap
sns.scatterplot(x='log_gdp_per_cap', y='happiness_score', data=world_happiness)
plt.show()
# Calculate correlation
cor = world_happiness['log_gdp_per_cap'].corr(world_happiness['happiness_score'])
print(cor)
# edited/added
world_happiness = pd.read_csv("world_happiness_full.csv")
# Scatterplot of grams_sugar_per_day and happiness_score
sns.scatterplot(x='grams_sugar_per_day', y='happiness_score', data=world_happiness)
plt.show()
# Correlation between grams_sugar_per_day and happiness_score
cor = world_happiness['grams_sugar_per_day'].corr(world_happiness['happiness_score'])
print(cor)