-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathbox_intersection_2d.py
176 lines (153 loc) · 6.94 KB
/
box_intersection_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
'''
torch implementation of 2d oriented box intersection
author: lanxiao li
2020.8
'''
import torch
from cuda_op.cuda_ext import sort_v
EPSILON = 1e-8
def box_intersection_th(corners1:torch.Tensor, corners2:torch.Tensor):
"""find intersection points of rectangles
Convention: if two edges are collinear, there is no intersection point
Args:
corners1 (torch.Tensor): B, N, 4, 2
corners2 (torch.Tensor): B, N, 4, 2
Returns:
intersectons (torch.Tensor): B, N, 4, 4, 2
mask (torch.Tensor) : B, N, 4, 4; bool
"""
# build edges from corners
line1 = torch.cat([corners1, corners1[:, :, [1, 2, 3, 0], :]], dim=3) # B, N, 4, 4: Batch, Box, edge, point
line2 = torch.cat([corners2, corners2[:, :, [1, 2, 3, 0], :]], dim=3)
# duplicate data to pair each edges from the boxes
# (B, N, 4, 4) -> (B, N, 4, 4, 4) : Batch, Box, edge1, edge2, point
line1_ext = line1.unsqueeze(3).repeat([1,1,1,4,1])
line2_ext = line2.unsqueeze(2).repeat([1,1,4,1,1])
x1 = line1_ext[..., 0]
y1 = line1_ext[..., 1]
x2 = line1_ext[..., 2]
y2 = line1_ext[..., 3]
x3 = line2_ext[..., 0]
y3 = line2_ext[..., 1]
x4 = line2_ext[..., 2]
y4 = line2_ext[..., 3]
# math: https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
num = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4)
den_t = (x1-x3)*(y3-y4) - (y1-y3)*(x3-x4)
t = den_t / num
t[num == .0] = -1.
mask_t = (t > 0) * (t < 1) # intersection on line segment 1
den_u = (x1-x2)*(y1-y3) - (y1-y2)*(x1-x3)
u = -den_u / num
u[num == .0] = -1.
mask_u = (u > 0) * (u < 1) # intersection on line segment 2
mask = mask_t * mask_u
t = den_t / (num + EPSILON) # overwrite with EPSILON. otherwise numerically unstable
intersections = torch.stack([x1 + t*(x2-x1), y1 + t*(y2-y1)], dim=-1)
intersections = intersections * mask.float().unsqueeze(-1)
return intersections, mask
def box1_in_box2(corners1:torch.Tensor, corners2:torch.Tensor):
"""check if corners of box1 lie in box2
Convention: if a corner is exactly on the edge of the other box, it's also a valid point
Args:
corners1 (torch.Tensor): (B, N, 4, 2)
corners2 (torch.Tensor): (B, N, 4, 2)
Returns:
c1_in_2: (B, N, 4) Bool
"""
a = corners2[:, :, 0:1, :] # (B, N, 1, 2)
b = corners2[:, :, 1:2, :] # (B, N, 1, 2)
d = corners2[:, :, 3:4, :] # (B, N, 1, 2)
ab = b - a # (B, N, 1, 2)
am = corners1 - a # (B, N, 4, 2)
ad = d - a # (B, N, 1, 2)
p_ab = torch.sum(ab * am, dim=-1) # (B, N, 4)
norm_ab = torch.sum(ab * ab, dim=-1) # (B, N, 1)
p_ad = torch.sum(ad * am, dim=-1) # (B, N, 4)
norm_ad = torch.sum(ad * ad, dim=-1) # (B, N, 1)
# NOTE: the expression looks ugly but is stable if the two boxes are exactly the same
# also stable with different scale of bboxes
cond1 = (p_ab / norm_ab > - 1e-6) * (p_ab / norm_ab < 1 + 1e-6) # (B, N, 4)
cond2 = (p_ad / norm_ad > - 1e-6) * (p_ad / norm_ad < 1 + 1e-6) # (B, N, 4)
return cond1*cond2
def box_in_box_th(corners1:torch.Tensor, corners2:torch.Tensor):
"""check if corners of two boxes lie in each other
Args:
corners1 (torch.Tensor): (B, N, 4, 2)
corners2 (torch.Tensor): (B, N, 4, 2)
Returns:
c1_in_2: (B, N, 4) Bool. i-th corner of box1 in box2
c2_in_1: (B, N, 4) Bool. i-th corner of box2 in box1
"""
c1_in_2 = box1_in_box2(corners1, corners2)
c2_in_1 = box1_in_box2(corners2, corners1)
return c1_in_2, c2_in_1
def build_vertices(corners1:torch.Tensor, corners2:torch.Tensor,
c1_in_2:torch.Tensor, c2_in_1:torch.Tensor,
inters:torch.Tensor, mask_inter:torch.Tensor):
"""find vertices of intersection area
Args:
corners1 (torch.Tensor): (B, N, 4, 2)
corners2 (torch.Tensor): (B, N, 4, 2)
c1_in_2 (torch.Tensor): Bool, (B, N, 4)
c2_in_1 (torch.Tensor): Bool, (B, N, 4)
inters (torch.Tensor): (B, N, 4, 4, 2)
mask_inter (torch.Tensor): (B, N, 4, 4)
Returns:
vertices (torch.Tensor): (B, N, 24, 2) vertices of intersection area. only some elements are valid
mask (torch.Tensor): (B, N, 24) indicates valid elements in vertices
"""
# NOTE: inter has elements equals zero and has zeros gradient (masked by multiplying with 0).
# can be used as trick
B = corners1.size()[0]
N = corners1.size()[1]
vertices = torch.cat([corners1, corners2, inters.view([B, N, -1, 2])], dim=2) # (B, N, 4+4+16, 2)
mask = torch.cat([c1_in_2, c2_in_1, mask_inter.view([B, N, -1])], dim=2) # Bool (B, N, 4+4+16)
return vertices, mask
def sort_indices(vertices:torch.Tensor, mask:torch.Tensor):
"""[summary]
Args:
vertices (torch.Tensor): float (B, N, 24, 2)
mask (torch.Tensor): bool (B, N, 24)
Returns:
sorted_index: bool (B, N, 9)
Note:
why 9? the polygon has maximal 8 vertices. +1 to duplicate the first element.
the index should have following structure:
(A, B, C, ... , A, X, X, X)
and X indicates the index of arbitary elements in the last 16 (intersections not corners) with
value 0 and mask False. (cause they have zero value and zero gradient)
"""
num_valid = torch.sum(mask.int(), dim=2).int() # (B, N)
mean = torch.sum(vertices * mask.float().unsqueeze(-1), dim=2, keepdim=True) / num_valid.unsqueeze(-1).unsqueeze(-1)
vertices_normalized = vertices - mean # normalization makes sorting easier
return sort_v(vertices_normalized, mask, num_valid).long()
def calculate_area(idx_sorted:torch.Tensor, vertices:torch.Tensor):
"""calculate area of intersection
Args:
idx_sorted (torch.Tensor): (B, N, 9)
vertices (torch.Tensor): (B, N, 24, 2)
return:
area: (B, N), area of intersection
selected: (B, N, 9, 2), vertices of polygon with zero padding
"""
idx_ext = idx_sorted.unsqueeze(-1).repeat([1,1,1,2])
selected = torch.gather(vertices, 2, idx_ext)
total = selected[:, :, 0:-1, 0]*selected[:, :, 1:, 1] - selected[:, :, 0:-1, 1]*selected[:, :, 1:, 0]
total = torch.sum(total, dim=2)
area = torch.abs(total) / 2
return area, selected
def oriented_box_intersection_2d(corners1:torch.Tensor, corners2:torch.Tensor):
"""calculate intersection area of 2d rectangles
Args:
corners1 (torch.Tensor): (B, N, 4, 2)
corners2 (torch.Tensor): (B, N, 4, 2)
Returns:
area: (B, N), area of intersection
selected: (B, N, 9, 2), vertices of polygon with zero padding
"""
inters, mask_inter = box_intersection_th(corners1, corners2)
c12, c21 = box_in_box_th(corners1, corners2)
vertices, mask = build_vertices(corners1, corners2, c12, c21, inters, mask_inter)
sorted_indices = sort_indices(vertices, mask)
return calculate_area(sorted_indices, vertices)