-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_count_matrix_ADTs.cpp
executable file
·492 lines (401 loc) · 17.9 KB
/
generate_count_matrix_ADTs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
#include <ctime>
#include <cstdio>
#include <cstdint>
#include <cassert>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <fstream>
#include <iomanip>
#include <algorithm>
#include <memory>
#include <atomic>
#include <mutex>
#include <thread>
#include "dirent.h"
#include "gzip_utils.hpp"
#include "barcode_utils.hpp"
#include "datamatrix_utils.hpp"
#include "ReadParser.hpp"
using namespace std;
const int totalseq_A_pos = 0;
const int totalseq_BC_pos = 10;
atomic<int> cnt, n_valid, n_valid_cell, n_valid_feature, prev_cnt; // cnt: total number of reads; n_valid, reads with valid cell barcode and feature barcode; n_valid_cell, reads with valid cell barcode; n_valid_feature, reads with valid feature barcode; prev_cnt: for printing # of reads processed purpose
int n_threads, max_mismatch_cell, max_mismatch_feature, umi_len;
string feature_type, totalseq_type, scaffold_sequence;
int barcode_pos; // Antibody: Total-Seq A 0; Total-Seq B or C 10. Crispr: default 0, can be set by option
bool convert_cell_barcode;
time_t start_, interim_, end_;
vector<vector<string>> inputs;
int n_cell, n_feature; // number of cell and feature barcodes
int cell_blen, feature_blen; // cell barcode length and feature barcode length
vector<string> cell_names, feature_names;
HashType cell_index, feature_index;
int n_cat; // number of feature categories (e.g. hashing, citeseq)
bool detected_ftype; // if feature csv contains feature type information
vector<string> cat_names; // category names
vector<int> cat_nfs, feature_categories; // cat_nfs, number of features in each category; int representing categories.
vector<DataCollector> dataCollectors;
struct result_t {
int cell_id, feature_id;
uint64_t umi;
result_t(int cell_id, uint64_t umi, int feature_id) : cell_id(cell_id), feature_id(feature_id), umi(umi) {}
};
vector<vector<vector<result_t>>> result_buffer;
vector<thread> processingThreads_;
vector<unique_ptr<mutex>> collector_locks;
void parse_input_directory(char* input_dirs) {
DIR *dir;
struct dirent *ent;
vector<string> mate1s, mate2s;
string mate1_pattern = string("R1_001.fastq.gz");
string mate2_pattern = string("R2_001.fastq.gz");
string dir_name;
char *input_dir = strtok(input_dirs, ",");
inputs.clear();
while (input_dir != NULL) {
assert((dir = opendir(input_dir)) != NULL);
dir_name = string(input_dir) + "/";
mate1s.clear();
mate2s.clear();
while ((ent = readdir(dir)) != NULL) {
if (ent->d_type == DT_REG) {
string file_name = string(ent->d_name);
size_t pos;
pos = file_name.find(mate1_pattern);
if (pos != string::npos && pos + mate1_pattern.length() == file_name.length()) {
mate1s.push_back(file_name);
}
pos = file_name.find(mate2_pattern);
if (pos != string::npos && pos + mate2_pattern.length() == file_name.length()) {
mate2s.push_back(file_name);
}
}
}
int s = mate1s.size();
assert(s == mate2s.size());
sort(mate1s.begin(), mate1s.end());
sort(mate2s.begin(), mate2s.end());
for (int i = 0; i < s; ++i) {
vector<string> one_pair(2);
one_pair[0] = dir_name + mate1s[i];
one_pair[1] = dir_name + mate2s[i];
inputs.push_back(move(one_pair));
}
input_dir = strtok(NULL, ",");
}
}
// return rightmost position + 1
inline int matching(const string& readseq, const string& pattern, int nmax_mis, int pos, int& best_value) {
int nmax_size = nmax_mis * 2 + 1;
int f[2][7]; // for banded dynamic programming, max allowed mismatch = 3
// f[x][y] : x, pattern, y, readseq
// f[x][y] = min(f[x - 1][y - 1] + delta, f[x][y - 1] + 1, f[x - 1][y] + 1)
int rlen = readseq.length(), plen = pattern.length();
int prev, curr, rpos;
int value, best_j = -1;
// init f[-1], do not allow insertion at the beginning
for (int j = 0; j < nmax_size; ++j) f[1][j] = nmax_mis + 1;
f[1][nmax_mis] = 0;
// Dynamic Programming
prev = 1; curr = 0;
best_value = 0;
int i;
for (i = 0; i < plen; ++i) {
best_value = nmax_mis + 1; best_j = -1;
for (int j = 0; j < nmax_size; ++j) {
value = nmax_mis + 1;
rpos = pos + i + (j - nmax_mis);
if (rpos >= 0 && rpos < rlen) value = min(value, f[prev][j] + (pattern[i] != readseq[rpos])); // match/mismatch
if (j > 0) value = min(value, f[curr][j - 1] + 1); // insertion
if (j + 1 < nmax_size) value = min(value, f[prev][j + 1] + 1); // deletion
f[curr][j] = value;
if (best_value > value) { best_value = value; best_j = j; }
}
if (best_value > nmax_mis) break;
prev = curr; curr ^= 1;
}
return best_value <= nmax_mis ? pos + i + (best_j - nmax_mis) : -1;
}
// [start, end]
inline int locate_scaffold_sequence(const string& sequence, const string& scaffold, int start, int end, int max_mismatch) {
int i, pos, best_value = max_mismatch + 1, value;
for (i = start; i <= end; ++i) {
pos = matching(sequence, scaffold, max_mismatch, i, best_value);
if (pos >= 0) break;
}
if (best_value > 0) {
for (int j = i + 1; j <= i + max_mismatch; ++j) {
pos = matching(sequence, scaffold, max_mismatch, j, value);
if (best_value > value) best_value = value, i = j;
}
}
return i <= end ? i : -1;
}
inline string safe_substr(const string& sequence, int pos, int length) {
if (pos + length > sequence.length()) {
printf("Error: Sequence length %d is too short (expected to be at least %d)!\n", (int)sequence.length(), pos + length);
exit(-1);
}
return sequence.substr(pos, length);
}
inline bool extract_feature_barcode(const string& sequence, int feature_length, const string& feature_type, string& feature_barcode) {
bool success = true;
int start_pos, end_pos; // here start_pos and end_pos are with respect to feature sequence.
if (feature_type == "antibody" || scaffold_sequence == "")
feature_barcode = safe_substr(sequence, barcode_pos, feature_length);
else {
// With scaffold sequence, locate it first
start_pos = 0;
end_pos = locate_scaffold_sequence(sequence, scaffold_sequence, start_pos + feature_length - max_mismatch_feature, sequence.length() - (scaffold_sequence.length() - 2), 2);
success = end_pos >= 0;
if (success) {
if (end_pos - start_pos >= feature_length)
feature_barcode = safe_substr(sequence, end_pos - feature_length, feature_length);
else
feature_barcode = string(feature_length - (end_pos - start_pos), 'N') + safe_substr(sequence, start_pos, end_pos - start_pos);
}
}
return success;
}
void detect_totalseq_type() {
const int nskim = 10000; // Look at first 10000 reads.
int ntotA, ntotBC, cnt;
uint64_t binary_feature;
Read read2;
HashIterType feature_iter;
cnt = ntotA = ntotBC = 0;
for (auto&& input_pair : inputs) {
iGZipFile gzip_in_r2(input_pair[1]);
while (gzip_in_r2.next(read2) && cnt < nskim) {
binary_feature = barcode_to_binary(safe_substr(read2.seq, totalseq_A_pos, feature_blen));
feature_iter = feature_index.find(binary_feature);
ntotA += (feature_iter != feature_index.end() && feature_iter->second.item_id >= 0);
if (read2.seq.length() >= totalseq_BC_pos + feature_blen) {
binary_feature = barcode_to_binary(safe_substr(read2.seq, totalseq_BC_pos, feature_blen));
feature_iter = feature_index.find(binary_feature);
ntotBC += (feature_iter != feature_index.end() && feature_iter->second.item_id >= 0);
}
++cnt;
}
if (cnt == nskim) break;
}
printf("ntotA = %d, ntotBC = %d.\n", ntotA, ntotBC);
if (ntotA < 10 && ntotBC < 10) {
printf("Error: Detected less than 10 feature barcodes in the first %d reads! Maybe you should consider to reverse complement your barcodes?\n", nskim);
exit(-1);
}
totalseq_type = (ntotA > ntotBC ? "TotalSeq-A" : (umi_len == 12 ? "TotalSeq-B" : "TotalSeq-C"));
barcode_pos = (totalseq_type == "TotalSeq-A" ? totalseq_A_pos : totalseq_BC_pos);
printf("TotalSeq type is automatically detected as %s, barcode starts from 0-based position %d.\n", totalseq_type.c_str(), barcode_pos);
}
bool parse_feature_names(int n_feature, vector<string>& feature_names, int& n_cat, vector<string>& cat_names, vector<int>& cat_nfs, vector<int>& feature_categories) {
std::size_t pos;
string cat_str;
pos = feature_names[0].find_first_of(',');
if (pos == string::npos) {
n_cat = 1;
return false;
}
n_cat = 0;
cat_names.clear();
cat_nfs.clear();
feature_categories.resize(n_feature, 0);
for (int i = 0; i < n_feature; ++i) {
pos = feature_names[i].find_first_of(',');
assert(pos != string::npos);
cat_str = feature_names[i].substr(pos + 1);
feature_names[i] = feature_names[i].substr(0, pos);
if (n_cat == 0 || cat_names.back() != cat_str) {
cat_names.push_back(cat_str);
cat_nfs.push_back(i);
++n_cat;
}
feature_categories[i] = n_cat - 1;
}
cat_nfs.push_back(n_feature);
return true;
}
void process_reads(ReadParser *parser, int thread_id) {
string cell_barcode, umi, feature_barcode;
uint64_t binary_cell, binary_umi, binary_feature;
int read1_len;
int cell_id, feature_id, collector_pos;
bool valid_cell, valid_feature;
HashIterType cell_iter, feature_iter;
int cnt_, n_valid_, n_valid_cell_, n_valid_feature_;
auto& buffer = result_buffer[thread_id];
auto rg = parser->getReadGroup();
while (parser->refill(rg)) {
cnt_ = n_valid_ = n_valid_cell_ = n_valid_feature_ = 0;
for (int i = 0; i < n_cat; ++i) buffer[i].clear();
for (auto& read_pair : rg) {
auto& read1 = read_pair[0];
auto& read2 = read_pair[1];
++cnt_;
cell_barcode = safe_substr(read1.seq, 0, cell_blen);
binary_cell = barcode_to_binary(cell_barcode);
cell_iter = cell_index.find(binary_cell);
valid_cell = cell_iter != cell_index.end() && cell_iter->second.item_id >= 0;
valid_feature = extract_feature_barcode(read2.seq, feature_blen, feature_type, feature_barcode);
if (valid_feature) {
binary_feature = barcode_to_binary(feature_barcode);
feature_iter = feature_index.find(binary_feature);
valid_feature = feature_iter != feature_index.end() && feature_iter->second.item_id >= 0;
}
n_valid_cell_ += valid_cell;
n_valid_feature_ += valid_feature;
if (valid_cell && valid_feature) {
++n_valid_;
read1_len = read1.seq.length();
if (read1_len < cell_blen + umi_len) {
printf("Warning: Processing thread %d detected read1 length %d is smaller than cell barcode length %d + UMI length %d. Shorten UMI length to %d!\n", thread_id, read1_len, cell_blen, umi_len, read1_len - cell_blen);
umi_len = read1_len - cell_blen;
}
umi = safe_substr(read1.seq, cell_blen, umi_len);
binary_umi = barcode_to_binary(umi);
cell_id = cell_iter->second.item_id;
feature_id = feature_iter->second.item_id;
collector_pos = detected_ftype ? feature_categories[feature_id] : 0;
buffer[collector_pos].emplace_back(cell_id, binary_umi, feature_id);
}
}
for (int i = 0; i < n_cat; ++i) {
auto& dataCollector = dataCollectors[i];
collector_locks[i]->lock();
for (auto& r : buffer[i]) dataCollector.insert(r.cell_id, r.umi, r.feature_id);
collector_locks[i]->unlock();
}
cnt += cnt_;
n_valid += n_valid_;
n_valid_cell += n_valid_cell_;
n_valid_feature += n_valid_feature_;
if (cnt - prev_cnt >= 1000000) {
printf("Processed %d reads.\n", cnt.load());
prev_cnt = cnt.load();
}
}
}
int main(int argc, char* argv[]) {
if (argc < 5) {
printf("Usage: generate_count_matrix_ADTs cell_barcodes.txt[.gz] feature_barcodes.csv fastq_folders output_name [-p #] [--max-mismatch-cell #] [--feature feature_type] [--max-mismatch-feature #] [--umi-length len] [--barcode-pos #] [--convert-cell-barcode] [--scaffold-sequence sequence]\n");
printf("Arguments:\n\tcell_barcodes.txt[.gz]\t10x genomics barcode white list, either gzipped or not.\n");
printf("\tfeature_barcodes.csv\tfeature barcode file;barcode,feature_name[,feature_category]. Optional feature_category is required only if hashing and citeseq data share the same sample index.\n");
printf("\tfastq_folders\tfolder containing all R1 and R2 FASTQ files ending with 001.fastq.gz .\n");
printf("\toutput_name\toutput file name prefix.\n");
printf("Options:\n");
printf("\t-p #\tnumber of threads. This number should be >= 2. [default: 2]\n");
printf("\t--max-mismatch-cell #\tmaximum number of mismatches allowed for cell barcodes. [default: 0]\n");
printf("\t--feature feature_type\tfeature type can be either antibody or crispr. [default: antibody]\n");
printf("\t--max-mismatch-feature #\tmaximum number of mismatches allowed for feature barcodes. [default: 2]\n");
printf("\t--umi-length len\tlength of the UMI sequence. [default: 12]\n");
printf("\t--barcode-pos #\tstart position of barcode in read 2, 0-based coordinate. [default: automatically determined for antibody; 0 for crispr]\n");
printf("\t--convert-cell-barcode\tconvert cell barcode to match RNA cell barcodes for 10x Genomics' data. Note that both cmo and 10x crispr need to set this option to convert feature barcoding barcodes to RNA barcodes. When data is hashing/CITE-Seq, this option will be automatically turned on for TotalSeq-B antibodies.\n");
printf("\t--scaffold-sequence sequence\tscaffold sequence used to locate the protospacer for sgRNA. This option is only used for crispr data. If --barcode-pos is not set and this option is set, try to locate barcode in front of the specified scaffold sequence.\n");
printf("Outputs:\n\toutput_name.csv\tfeature-cell count matrix. First row: [Antibody/CRISPR],barcode_1,...,barcode_n;Other rows: feature_name,feature_count_1,...,feature_count_n.\n");
printf("\toutput_name.stat.csv.gz\tSufficient statistics file. First row: Barcode,UMI,Feature,Count; Other rows: each row describe the read count for one barcode-umi-feature combination.\n\n");
printf("\tIf feature_category presents, this program will output the above two files for each feature_category. For example, if feature_category is hashing, output_name.hashing.csv and output_name.hashing.stat.csv.gz will be generated.\n");
printf("\toutput_name.report.txt\tA report file summarizing barcode, UMI and read results.\n");
exit(-1);
}
start_ = time(NULL);
n_threads = 2;
max_mismatch_cell = 0;
feature_type = "antibody";
max_mismatch_feature = 2;
umi_len = 12;
barcode_pos = -1;
totalseq_type = "";
scaffold_sequence = "";
convert_cell_barcode = false;
for (int i = 5; i < argc; ++i) {
if (!strcmp(argv[i], "-p")) {
n_threads = atoi(argv[i + 1]);
}
if (!strcmp(argv[i], "--max-mismatch-cell")) {
max_mismatch_cell = atoi(argv[i + 1]);
}
if (!strcmp(argv[i], "--feature")) {
feature_type = argv[i + 1];
}
if (!strcmp(argv[i], "--max-mismatch-feature")) {
max_mismatch_feature = atoi(argv[i + 1]);
}
if (!strcmp(argv[i], "--umi-length")) {
umi_len = atoi(argv[i + 1]);
}
if (!strcmp(argv[i], "--barcode-pos")) {
barcode_pos = atoi(argv[i + 1]);
}
if (!strcmp(argv[i], "--convert-cell-barcode")) {
convert_cell_barcode = true;
}
if (!strcmp(argv[i], "--scaffold-sequence")) {
scaffold_sequence = argv[i + 1];
}
}
printf("Load feature barcodes.\n");
parse_sample_sheet(argv[2], n_feature, feature_blen, feature_index, feature_names, max_mismatch_feature);
// Sort feature_names and reindex feature_index if modality column presents
if (!feature_names.empty() && feature_names[0].find_first_of(',') != string::npos)
group_by_modality(feature_index, feature_names);
detected_ftype = parse_feature_names(n_feature, feature_names, n_cat, cat_names, cat_nfs, feature_categories);
parse_input_directory(argv[3]);
if (feature_type == "antibody") {
if (barcode_pos < 0) detect_totalseq_type(); // if specify --barcode-pos, must be a customized assay
}
else {
if (feature_type != "crispr") {
printf("Do not support unknown feature type %s!\n", feature_type.c_str());
exit(-1);
}
if (barcode_pos < 0) barcode_pos = 0; // default is 0
}
interim_ = time(NULL);
printf("Load cell barcodes.\n");
convert_cell_barcode = convert_cell_barcode || (feature_type == "antibody" && totalseq_type == "TotalSeq-B");
parse_sample_sheet(argv[1], n_cell, cell_blen, cell_index, cell_names, max_mismatch_cell, convert_cell_barcode);
end_ = time(NULL);
printf("Time spent on parsing cell barcodes = %.2fs.\n", difftime(end_, interim_));
interim_ = end_;
int np = min(max(1, n_threads / 3), (int)inputs.size());
int nt = np * 2;
dataCollectors.resize(n_cat);
result_buffer.resize(nt);
for (int i = 0; i < nt; ++i) result_buffer[i].resize(n_cat);
for (int i = 0; i < n_cat; ++i) collector_locks.emplace_back(new mutex());
cnt = 0; prev_cnt = 0;
n_valid = 0;
n_valid_cell =0 ;
n_valid_feature = 0;
ReadParser *parser = new ReadParser(inputs, nt, np);
for (int i = 0; i < nt; ++i)
processingThreads_.emplace_back([parser, i](){ process_reads(parser, i); });
for (auto& thread : processingThreads_) thread.join();
delete parser;
result_buffer.clear();
end_ = time(NULL);
printf("Parsing input data is finished. %d reads are processed. Time spent = %.2fs.\n", cnt.load(), difftime(end_, interim_));
interim_ = end_;
string output_name = argv[4];
ofstream fout;
fout.open(output_name + ".report.txt");
fout<< "Total number of reads: "<< cnt<< endl;
fout<< "Number of reads with valid cell barcodes: "<< n_valid_cell<< " ("<< fixed<< setprecision(2)<< n_valid_cell * 100.0 / cnt << "%)"<< endl;
fout<< "Number of reads with valid feature barcodes: "<< n_valid_feature<< " ("<< fixed<< setprecision(2)<< n_valid_feature * 100.0 / cnt << "%)"<< endl;
fout<< "Number of reads with valid cell and feature barcodes: "<< n_valid<< " ("<< fixed<< setprecision(2)<< n_valid * 100.0 / cnt << "%)"<< endl;
if (!detected_ftype)
dataCollectors[0].output(output_name, feature_type, 0, n_feature, cell_names, umi_len, feature_names, fout, n_threads);
else
for (int i = 0; i < n_cat; ++i) {
printf("Feature '%s':\n", cat_names[i].c_str());
dataCollectors[i].output(output_name + "." + cat_names[i], feature_type, cat_nfs[i], cat_nfs[i + 1], cell_names, umi_len, feature_names, fout, n_threads);
}
fout.close();
printf("%s.report.txt is written.\n", output_name.c_str());
end_ = time(NULL);
printf("Outputs are written. Time spent = %.2fs.\n", difftime(end_, interim_));
printf("Total time spent (not including destruct objects) = %.2fs.\n", difftime(end_, start_));
return 0;
}