-
Notifications
You must be signed in to change notification settings - Fork 0
/
map_embeddings_wc.py
490 lines (449 loc) · 27.3 KB
/
map_embeddings_wc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import embeddings
from cupy_utils import *
import argparse
import collections
import numpy as np
import re
import sys
import time
def dropout(m, p):
if p <= 0.0:
xp = get_array_module(m)
return m, xp.ones_like(m)
else:
xp = get_array_module(m)
mask = xp.random.rand(*m.shape) >= p
return m*mask, mask
def topk_mean(m, k, inplace=False): # TODO Assuming that axis is 1
xp = get_array_module(m)
n = m.shape[0]
ans = xp.zeros(n, dtype=m.dtype)
if k <= 0:
return ans
if not inplace:
m = xp.array(m)
ind0 = xp.arange(n)
ind1 = xp.empty(n, dtype=int)
minimum = m.min()
for i in range(k):
m.argmax(axis=1, out=ind1)
ans += m[ind0, ind1]
m[ind0, ind1] = minimum
return ans / k
def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='Map word embeddings in two languages into a shared space')
parser.add_argument('src_input', help='the input source embeddings')
parser.add_argument('src_input_c', help='the input source context embeddings')
parser.add_argument('trg_input', help='the input target embeddings')
parser.add_argument('trg_input_c', help='the input target context embeddings')
parser.add_argument('src_output', help='the output source embeddings')
parser.add_argument('src_output_c', help='the output source context embeddings')
parser.add_argument('trg_output', help='the output target embeddings')
parser.add_argument('trg_output_c', help='the output target context embeddings')
parser.add_argument('--encoding', default='utf-8', help='the character encoding for input/output (defaults to utf-8)')
parser.add_argument('--precision', choices=['fp16', 'fp32', 'fp64'], default='fp32', help='the floating-point precision (defaults to fp32)')
parser.add_argument('--cuda', action='store_true', help='use cuda (requires cupy)')
parser.add_argument('--batch_size', default=10000, type=int, help='batch size (defaults to 10000); does not affect results, larger is usually faster but uses more memory')
parser.add_argument('--seed', type=int, default=0, help='the random seed (defaults to 0)')
recommended_group = parser.add_argument_group('recommended settings', 'Recommended settings for different scenarios')
recommended_type = recommended_group.add_mutually_exclusive_group()
recommended_type.add_argument('--supervised', metavar='DICTIONARY', help='recommended if you have a large training dictionary')
recommended_type.add_argument('--semi_supervised', metavar='DICTIONARY', help='recommended if you have a small seed dictionary')
recommended_type.add_argument('--identical', action='store_true', help='recommended if you have no seed dictionary but can rely on identical words')
recommended_type.add_argument('--unsupervised', action='store_true', help='recommended if you have no seed dictionary and do not want to rely on identical words')
recommended_type.add_argument('--acl2018', action='store_true', help='reproduce our ACL 2018 system')
recommended_type.add_argument('--aaai2018', metavar='DICTIONARY', help='reproduce our AAAI 2018 system')
recommended_type.add_argument('--acl2017', action='store_true', help='reproduce our ACL 2017 system with numeral initialization')
recommended_type.add_argument('--acl2017_seed', metavar='DICTIONARY', help='reproduce our ACL 2017 system with a seed dictionary')
recommended_type.add_argument('--emnlp2016', metavar='DICTIONARY', help='reproduce our EMNLP 2016 system')
init_group = parser.add_argument_group('advanced initialization arguments', 'Advanced initialization arguments')
init_type = init_group.add_mutually_exclusive_group()
init_type.add_argument('-d', '--init_dictionary', default=sys.stdin.fileno(), metavar='DICTIONARY', help='the training dictionary file (defaults to stdin)')
init_type.add_argument('--init_identical', action='store_true', help='use identical words as the seed dictionary')
init_type.add_argument('--init_numerals', action='store_true', help='use latin numerals (i.e. words matching [0-9]+) as the seed dictionary')
init_type.add_argument('--init_unsupervised', action='store_true', help='use unsupervised initialization')
init_group.add_argument('--unsupervised_vocab', type=int, default=0, help='restrict the vocabulary to the top k entries for unsupervised initialization')
mapping_group = parser.add_argument_group('advanced mapping arguments', 'Advanced embedding mapping arguments')
mapping_group.add_argument('--normalize', choices=['unit', 'center', 'unitdim', 'centeremb', 'none'], nargs='*', default=[], help='the normalization actions to perform in order')
mapping_group.add_argument('--whiten', action='store_true', help='whiten the embeddings')
mapping_group.add_argument('--src_reweight', type=float, default=0, nargs='?', const=1, help='re-weight the source language embeddings')
mapping_group.add_argument('--trg_reweight', type=float, default=0, nargs='?', const=1, help='re-weight the target language embeddings')
mapping_group.add_argument('--src_dewhiten', choices=['src', 'trg'], help='de-whiten the source language embeddings')
mapping_group.add_argument('--trg_dewhiten', choices=['src', 'trg'], help='de-whiten the target language embeddings')
mapping_group.add_argument('--dim_reduction', type=int, default=0, help='apply dimensionality reduction')
mapping_type = mapping_group.add_mutually_exclusive_group()
mapping_type.add_argument('-c', '--orthogonal', action='store_true', help='use orthogonal constrained mapping')
mapping_type.add_argument('-u', '--unconstrained', action='store_true', help='use unconstrained mapping')
self_learning_group = parser.add_argument_group('advanced self-learning arguments', 'Advanced arguments for self-learning')
self_learning_group.add_argument('--self_learning', action='store_true', help='enable self-learning')
self_learning_group.add_argument('--vocabulary_cutoff', type=int, default=0, help='restrict the vocabulary to the top k entries')
self_learning_group.add_argument('--direction', choices=['forward', 'backward', 'union'], default='union', help='the direction for dictionary induction (defaults to union)')
self_learning_group.add_argument('--csls', type=int, nargs='?', default=0, const=10, metavar='NEIGHBORHOOD_SIZE', dest='csls_neighborhood', help='use CSLS for dictionary induction')
self_learning_group.add_argument('--threshold', default=0.000001, type=float, help='the convergence threshold (defaults to 0.000001)')
self_learning_group.add_argument('--validation', default=None, metavar='DICTIONARY', help='a dictionary file for validation at each iteration')
self_learning_group.add_argument('--stochastic_initial', default=0.1, type=float, help='initial keep probability stochastic dictionary induction (defaults to 0.1)')
self_learning_group.add_argument('--stochastic_multiplier', default=2.0, type=float, help='stochastic dictionary induction multiplier (defaults to 2.0)')
self_learning_group.add_argument('--stochastic_interval', default=50, type=int, help='stochastic dictionary induction interval (defaults to 50)')
self_learning_group.add_argument('--log', help='write to a log file in tsv format at each iteration')
self_learning_group.add_argument('-v', '--verbose', action='store_true', help='write log information to stderr at each iteration')
args = parser.parse_args()
if args.supervised is not None:
parser.set_defaults(init_dictionary=args.supervised, normalize=['unit', 'center', 'unit'], whiten=True, src_reweight=0.5, trg_reweight=0.5, src_dewhiten='src', trg_dewhiten='trg', batch_size=1000)
if args.semi_supervised is not None:
parser.set_defaults(init_dictionary=args.semi_supervised, normalize=['unit', 'center', 'unit'], whiten=True, src_reweight=0.5, trg_reweight=0.5, src_dewhiten='src', trg_dewhiten='trg', self_learning=True, vocabulary_cutoff=20000, csls_neighborhood=10)
if args.identical:
parser.set_defaults(init_identical=True, normalize=['unit', 'center', 'unit'], whiten=True, src_reweight=0.5, trg_reweight=0.5, src_dewhiten='src', trg_dewhiten='trg', self_learning=True, vocabulary_cutoff=20000, csls_neighborhood=10)
if args.unsupervised or args.acl2018:
parser.set_defaults(init_unsupervised=True, unsupervised_vocab=4000, normalize=['unit', 'center', 'unit'], whiten=True, src_reweight=0.5, trg_reweight=0.5, src_dewhiten='src', trg_dewhiten='trg', self_learning=True, vocabulary_cutoff=20000, csls_neighborhood=10)
if args.aaai2018:
parser.set_defaults(init_dictionary=args.aaai2018, normalize=['unit', 'center'], whiten=True, trg_reweight=1, src_dewhiten='src', trg_dewhiten='trg', batch_size=1000)
if args.acl2017:
parser.set_defaults(init_numerals=True, orthogonal=True, normalize=['unit', 'center'], self_learning=True, direction='forward', stochastic_initial=1.0, stochastic_interval=1, batch_size=1000)
if args.acl2017_seed:
parser.set_defaults(init_dictionary=args.acl2017_seed, orthogonal=True, normalize=['unit', 'center'], self_learning=True, direction='forward', stochastic_initial=1.0, stochastic_interval=1, batch_size=1000)
if args.emnlp2016:
parser.set_defaults(init_dictionary=args.emnlp2016, orthogonal=True, normalize=['unit', 'center'], batch_size=1000)
args = parser.parse_args()
# Check command line arguments
if (args.src_dewhiten is not None or args.trg_dewhiten is not None) and not args.whiten:
print('ERROR: De-whitening requires whitening first', file=sys.stderr)
sys.exit(-1)
# Choose the right dtype for the desired precision
if args.precision == 'fp16':
dtype = 'float16'
elif args.precision == 'fp32':
dtype = 'float32'
elif args.precision == 'fp64':
dtype = 'float64'
threshold = 200000
# Read input embeddings
srcfile = open(args.src_input, encoding=args.encoding, errors='surrogateescape')
trgfile = open(args.trg_input, encoding=args.encoding, errors='surrogateescape')
src_words, x = embeddings.read(srcfile, dtype=dtype, threshold=threshold)
trg_words, z = embeddings.read(trgfile, dtype=dtype, threshold=threshold)
srcfile_c = open(args.src_input_c, encoding=args.encoding, errors='surrogateescape')
trgfile_c = open(args.trg_input_c, encoding=args.encoding, errors='surrogateescape')
_, x_c = embeddings.read(srcfile_c, dtype=dtype, threshold=threshold)
_, z_c = embeddings.read(trgfile_c, dtype=dtype, threshold=threshold)
# NumPy/CuPy management
if args.cuda:
if not supports_cupy():
print('ERROR: Install CuPy for CUDA support', file=sys.stderr)
sys.exit(-1)
xp = get_cupy()
x = xp.asarray(x)
z = xp.asarray(z)
x_c = xp.asarray(x_c)
z_c = xp.asarray(z_c)
else:
xp = np
xp.random.seed(args.seed)
# Build word to index map
src_word2ind = {word: i for i, word in enumerate(src_words)}
trg_word2ind = {word: i for i, word in enumerate(trg_words)}
# STEP 0: Normalization
embeddings.normalize(x, args.normalize)
embeddings.normalize(x_c, args.normalize)
embeddings.normalize(z, args.normalize)
embeddings.normalize(z_c, args.normalize)
# Build the seed dictionary
src_indices = []
trg_indices = []
if args.init_unsupervised:
sim_size = min(x.shape[0], z.shape[0]) if args.unsupervised_vocab <= 0 else min(x.shape[0], z.shape[0], args.unsupervised_vocab)
u, s, vt = xp.linalg.svd(x[:sim_size], full_matrices=False)
xsim = (u*s).dot(u.T)
u, s, vt = xp.linalg.svd(z[:sim_size], full_matrices=False)
zsim = (u*s).dot(u.T)
del u, s, vt
xsim.sort(axis=1)
zsim.sort(axis=1)
embeddings.normalize(xsim, args.normalize)
embeddings.normalize(zsim, args.normalize)
sim = xsim.dot(zsim.T)
if args.csls_neighborhood > 0:
knn_sim_fwd = topk_mean(sim, k=args.csls_neighborhood)
knn_sim_bwd = topk_mean(sim.T, k=args.csls_neighborhood)
sim -= knn_sim_fwd[:, xp.newaxis]/2 + knn_sim_bwd/2
if args.direction == 'forward':
src_indices = xp.arange(sim_size)
trg_indices = sim.argmax(axis=1)
elif args.direction == 'backward':
src_indices = sim.argmax(axis=0)
trg_indices = xp.arange(sim_size)
elif args.direction == 'union':
src_indices = xp.concatenate((xp.arange(sim_size), sim.argmax(axis=0)))
trg_indices = xp.concatenate((sim.argmax(axis=1), xp.arange(sim_size)))
del xsim, zsim, sim
elif args.init_numerals:
numeral_regex = re.compile('^[0-9]+$')
src_numerals = {word for word in src_words if numeral_regex.match(word) is not None}
trg_numerals = {word for word in trg_words if numeral_regex.match(word) is not None}
numerals = src_numerals.intersection(trg_numerals)
for word in numerals:
src_indices.append(src_word2ind[word])
trg_indices.append(trg_word2ind[word])
elif args.init_identical:
identical = set(src_words).intersection(set(trg_words))
for word in identical:
src_indices.append(src_word2ind[word])
trg_indices.append(trg_word2ind[word])
else:
f = open(args.init_dictionary, encoding=args.encoding, errors='surrogateescape')
for line in f:
src, trg = line.split()
try:
src_ind = src_word2ind[src]
trg_ind = trg_word2ind[trg]
src_indices.append(src_ind)
trg_indices.append(trg_ind)
except KeyError:
print('WARNING: OOV dictionary entry ({0} - {1})'.format(src, trg), file=sys.stderr)
# Read validation dictionary
if args.validation is not None:
f = open(args.validation, encoding=args.encoding, errors='surrogateescape')
validation = collections.defaultdict(set)
oov = set()
vocab = set()
for line in f:
src, trg = line.split()
try:
src_ind = src_word2ind[src]
trg_ind = trg_word2ind[trg]
validation[src_ind].add(trg_ind)
vocab.add(src)
except KeyError:
oov.add(src)
oov -= vocab # If one of the translation options is in the vocabulary, then the entry is not an oov
validation_coverage = len(validation) / (len(validation) + len(oov))
# Create log file
if args.log:
log = open(args.log, mode='w', encoding=args.encoding, errors='surrogateescape')
# Allocate memory
xw = xp.empty_like(x)
zw = xp.empty_like(z)
x_cw = xp.empty_like(x_c)
z_cw = xp.empty_like(z_c)
src_size = x.shape[0] if args.vocabulary_cutoff <= 0 else min(x.shape[0], args.vocabulary_cutoff)
trg_size = z.shape[0] if args.vocabulary_cutoff <= 0 else min(z.shape[0], args.vocabulary_cutoff)
simfwd = xp.empty((args.batch_size, trg_size), dtype=dtype)
simbwd = xp.empty((args.batch_size, src_size), dtype=dtype)
simfwd_c = xp.empty((args.batch_size, trg_size), dtype=dtype)
simbwd_c = xp.empty((args.batch_size, src_size), dtype=dtype)
if args.validation is not None:
simval = xp.empty((len(validation.keys()), z.shape[0]), dtype=dtype)
simval_c = xp.empty((len(validation.keys()), z_c.shape[0]), dtype=dtype)
best_sim_forward = xp.full(src_size, -100, dtype=dtype)
src_indices_forward = xp.arange(src_size)
trg_indices_forward = xp.zeros(src_size, dtype=int)
src_indices_forward_c = xp.arange(src_size)
trg_indices_forward_c = xp.zeros(src_size, dtype=int)
best_sim_backward = xp.full(trg_size, -100, dtype=dtype)
src_indices_backward = xp.zeros(trg_size, dtype=int)
trg_indices_backward = xp.arange(trg_size)
src_indices_backward_c = xp.zeros(trg_size, dtype=int)
trg_indices_backward_c = xp.arange(trg_size)
knn_sim_fwd = xp.zeros(src_size, dtype=dtype)
knn_sim_bwd = xp.zeros(trg_size, dtype=dtype)
knn_sim_fwd_c = xp.zeros(src_size, dtype=dtype)
knn_sim_bwd_c = xp.zeros(trg_size, dtype=dtype)
# Training loop
best_objective = objective = -100.
it = 1
last_improvement = 0
keep_prob = args.stochastic_initial
t = time.time()
end = not args.self_learning
while True:
# Increase the keep probability if we have not improve in args.stochastic_interval iterations
if it - last_improvement > args.stochastic_interval:
if keep_prob >= 1.0:
end = True
keep_prob = min(1.0, args.stochastic_multiplier*keep_prob)
last_improvement = it
# Update the embedding mapping
if args.orthogonal or not end: # orthogonal mapping
# compute \Omega by W_X and W_Z
u, s, vt = xp.linalg.svd(z[trg_indices].T.dot(x[src_indices]))
w = vt.T.dot(u.T)
# apply \Omega to W_X
x.dot(w, out=xw)
zw[:] = z
# apply \Omega to C_X
x_c.dot(w, out=x_cw)
z_cw[:] = z_c
elif args.unconstrained: # unconstrained mapping
x_pseudoinv = xp.linalg.inv(x[src_indices].T.dot(x[src_indices])).dot(x[src_indices].T)
w = x_pseudoinv.dot(z[trg_indices])
x.dot(w, out=xw)
zw[:] = z
else: # advanced mapping
# TODO xw.dot(wx2, out=xw) and alike not working
xw[:] = x
zw[:] = z
x_cw[:] = x_c
z_cw[:] = z_c
# STEP 1: Whitening
def whitening_transformation(m):
u, s, vt = xp.linalg.svd(m, full_matrices=False)
return vt.T.dot(xp.diag(1/s)).dot(vt)
if args.whiten:
wx1 = whitening_transformation(xw[src_indices])
wz1 = whitening_transformation(zw[trg_indices])
xw = xw.dot(wx1)
zw = zw.dot(wz1)
wx1_c = whitening_transformation(x_cw[src_indices])
wz1_c = whitening_transformation(z_cw[trg_indices])
x_cw = x_cw.dot(wx1_c)
z_cw = z_cw.dot(wz1_c)
# STEP 2: Orthogonal mapping
wx2, s, wz2_t = xp.linalg.svd(xw[src_indices].T.dot(zw[trg_indices]))
wz2 = wz2_t.T
xw = xw.dot(wx2)
zw = zw.dot(wz2)
wx2_c, s_c, wz2_t_c = xp.linalg.svd(x_cw[src_indices].T.dot(z_cw[trg_indices]))
wz2_c = wz2_t_c.T
x_cw = x_cw.dot(wx2_c)
z_cw = z_cw.dot(wz2_c)
# STEP 3: Re-weighting
xw *= s**args.src_reweight
zw *= s**args.trg_reweight
x_cw *= s_c**args.src_reweight
z_cw *= s_c**args.trg_reweight
# STEP 4: De-whitening
if args.src_dewhiten == 'src':
xw = xw.dot(wx2.T.dot(xp.linalg.inv(wx1)).dot(wx2))
x_cw = x_cw.dot(wx2_c.T.dot(xp.linalg.inv(wx1_c)).dot(wx2_c))
elif args.src_dewhiten == 'trg':
xw = xw.dot(wz2.T.dot(xp.linalg.inv(wz1)).dot(wz2))
x_cw = x_cw.dot(wz2_c.T.dot(xp.linalg.inv(wz1_c)).dot(wz2_c))
if args.trg_dewhiten == 'src':
zw = zw.dot(wx2.T.dot(xp.linalg.inv(wx1)).dot(wx2))
z_cw = z_cw.dot(wx2_c.T.dot(xp.linalg.inv(wx1_c)).dot(wx2_c))
elif args.trg_dewhiten == 'trg':
zw = zw.dot(wz2.T.dot(xp.linalg.inv(wz1)).dot(wz2))
z_cw = z_cw.dot(wz2_c.T.dot(xp.linalg.inv(wz1_c)).dot(wz2_c))
# STEP 5: Dimensionality reduction
if args.dim_reduction > 0:
xw = xw[:, :args.dim_reduction]
zw = zw[:, :args.dim_reduction]
x_cw = x_cw[:, :args.dim_reduction]
z_cw = z_cw[:, :args.dim_reduction]
# Self-learning
if end:
break
else:
# Update the training dictionary
if args.direction in ('forward', 'union'):
if args.csls_neighborhood > 0:
for i in range(0, trg_size, simbwd.shape[0]):
j = min(i + simbwd.shape[0], trg_size)
zw[i:j].dot(xw[:src_size].T, out=simbwd[:j-i])
knn_sim_bwd[i:j] = topk_mean(simbwd[:j-i], k=args.csls_neighborhood, inplace=True)
# CSLS for context embedding
z_cw[i:j].dot(x_cw[:src_size].T, out=simbwd_c[:j-i])
knn_sim_bwd_c[i:j] = topk_mean(simbwd_c[:j-i], k=args.csls_neighborhood, inplace=True)
for i in range(0, src_size, simfwd.shape[0]):
j = min(i + simfwd.shape[0], src_size)
xw[i:j].dot(zw[:trg_size].T, out=simfwd[:j-i])
simfwd[:j-i].max(axis=1, out=best_sim_forward[i:j])
simfwd[:j-i] -= knn_sim_bwd/2 # Equivalent to the real CSLS scores for NN
a, mask = dropout(simfwd[:j-i], 1 - keep_prob)
a.argmax(axis=1, out=trg_indices_forward[i:j])
x_cw[i:j].dot(z_cw[:trg_size].T, out=simfwd_c[:j-i])
# simfwd_c[:j-i].max(axis=1, out=best_sim_forward[i:j])
simfwd_c[:j-i] -= knn_sim_bwd_c/2 # Equivalent to the real CSLS scores for NN
(simfwd_c*mask).argmax(axis=1, out=trg_indices_forward_c[i:j]) # drop the items from the same positions
if args.direction in ('backward', 'union'):
if args.csls_neighborhood > 0:
for i in range(0, src_size, simfwd.shape[0]):
j = min(i + simfwd.shape[0], src_size)
xw[i:j].dot(zw[:trg_size].T, out=simfwd[:j-i])
knn_sim_fwd[i:j] = topk_mean(simfwd[:j-i], k=args.csls_neighborhood, inplace=True)
x_cw[i:j].dot(z_cw[:trg_size].T, out=simfwd_c[:j-i])
knn_sim_fwd_c[i:j] = topk_mean(simfwd_c[:j-i], k=args.csls_neighborhood, inplace=True)
for i in range(0, trg_size, simbwd.shape[0]):
j = min(i + simbwd.shape[0], trg_size)
zw[i:j].dot(xw[:src_size].T, out=simbwd[:j-i])
simbwd[:j-i].max(axis=1, out=best_sim_backward[i:j])
simbwd[:j-i] -= knn_sim_fwd/2 # Equivalent to the real CSLS scores for NN
a, mask = dropout(simbwd[:j-i], 1 - keep_prob)
a.argmax(axis=1, out=src_indices_backward[i:j])
z_cw[i:j].dot(x_cw[:src_size].T, out=simbwd_c[:j-i])
# simbwd[:j-i].max(axis=1, out=best_sim_backward[i:j])
simbwd_c[:j-i] -= knn_sim_fwd_c/2 # Equivalent to the real CSLS scores for NN
(simbwd_c*mask).argmax(axis=1, out=src_indices_backward_c[i:j])
if args.direction == 'forward':
src_indices = src_indices_forward
trg_indices = trg_indices_forward
elif args.direction == 'backward':
src_indices = src_indices_backward
trg_indices = trg_indices_backward
elif args.direction == 'union':
# take intersection of two dicitionaries
index_forward = (trg_indices_forward == trg_indices_forward_c)
index_backward = (src_indices_backward == src_indices_backward_c)
src_indices = xp.concatenate((src_indices_forward[index_forward], src_indices_backward[index_backward]))
trg_indices = xp.concatenate((trg_indices_forward[index_forward], trg_indices_backward[index_backward]))
print('D size:', len(src_indices))
# Objective function evaluation
if args.direction == 'forward':
objective = xp.mean(best_sim_forward).tolist()
elif args.direction == 'backward':
objective = xp.mean(best_sim_backward).tolist()
elif args.direction == 'union':
objective = (xp.mean(best_sim_forward) + xp.mean(best_sim_backward)).tolist() / 2
if objective - best_objective >= args.threshold:
last_improvement = it
best_objective = objective
# Accuracy and similarity evaluation in validation
if args.validation is not None:
src = list(validation.keys())
xw[src].dot(zw.T, out=simval)
nn = asnumpy(simval.argmax(axis=1))
x_cw[src].dot(z_cw.T, out=simval_c)
nnn = asnumpy(simval_c.argmax(axis=1))
accuracy = np.mean([1 if nn[i] in validation[src[i]] else 0 for i in range(len(src))])
accuracy_c = np.mean([1 if nnn[i] in validation[src[i]] else 0 for i in range(len(src))])
# acc = np.mean([1 if nn[i] in validation[src[i]] and nn[i] == nnn[i] else 0 for i in range(len(src))])
acc_D = np.sum([1 if nn[i] in validation[src[i]] and nn[i] == nnn[i] else 0 for i in range(len(src))]) / np.sum([1 if nn[i] == nnn[i] else 0 for i in range(len(src))])
# wc_same = np.mean([1 if nn[i] == nnn[i] else 0 for i in range(len(src))])
similarity = np.mean([max([simval[i, j].tolist() for j in validation[src[i]]]) for i in range(len(src))])
# Logging
duration = time.time() - t
if args.verbose:
print(file=sys.stderr)
print('ITERATION {0} ({1:.2f}s)'.format(it, duration), file=sys.stderr)
print('\t- Objective: {0:9.4f}%'.format(100 * objective), file=sys.stderr)
print('\t- Drop probability: {0:9.4f}%'.format(100 - 100*keep_prob), file=sys.stderr)
if args.validation is not None:
print('\t- Val. similarity: {0:9.4f}%'.format(100 * similarity), file=sys.stderr)
print('\t- Val. accuracy: {0:9.4f}%'.format(100 * accuracy), file=sys.stderr)
print('\t- Val. accuracy_c: {0:9.4f}%'.format(100 * accuracy_c), file=sys.stderr)
print('\t- Val. accuracy_D: {0:9.4f}%'.format(100 * acc_D), file=sys.stderr)
# print('\t- Val. same_right: {0:9.4f}%'.format(100 * acc), file=sys.stderr)
# print('\t- Val. wc_same: {0:9.4f}%'.format(100 * wc_same), file=sys.stderr)
sys.stderr.flush()
if args.log is not None:
val = '{0:.6f}\t{1:.6f}\t{2:.6f}\t{3:.6f}\t{4:.6f}'.format(
100 * similarity, 100 * accuracy, 100 * validation_coverage, 100 * accuracy_c, 100 * acc_D) if args.validation is not None else ''
print('{0}\t{1:.6f}\t{2}\t{3:.6f}'.format(it, 100 * objective, val, duration), file=log)
log.flush()
t = time.time()
it += 1
# Write mapped embeddings
srcfile = open(args.src_output, mode='w', encoding=args.encoding, errors='surrogateescape')
trgfile = open(args.trg_output, mode='w', encoding=args.encoding, errors='surrogateescape')
srcfile_c = open(args.src_output_c, mode='w', encoding=args.encoding, errors='surrogateescape')
trgfile_c = open(args.trg_output_c, mode='w', encoding=args.encoding, errors='surrogateescape')
embeddings.write(src_words, xw, srcfile)
embeddings.write(trg_words, zw, trgfile)
embeddings.write(src_words, x_cw, srcfile_c)
embeddings.write(trg_words, z_cw, trgfile_c)
srcfile.close()
trgfile.close()
srcfile_c.close()
trgfile_c.close()
if __name__ == '__main__':
main()