-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathksw2.tex
242 lines (220 loc) · 8.41 KB
/
ksw2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
\documentclass[10pt]{article}
\title{Alignment with dynamic programming}
\author{Heng Li}
\begin{document}
\maketitle
\section{General notations}
Suppose we have two sequences: a \emph{target} sequence and a \emph{query}
sequence. The length of the target sequence is $\ell_t$ with each residue
indexed by $i$. The length of query is $\ell_q$ with each residue indexed by
$j$. Gaps on the target sequence are \emph{deletions} and gaps on the query are
\emph{insertions}. Function $S(i,j)$ gives the score between two residues on
the target and the query, respectively. $q>0$ is the gap open/initiation
penalty and $e>0$ the gap extension penalty. A gap of length $k$ costs
$q+k\cdot e$.
\section{Global alignment with affine-gap penalties}
\subsection{Durbin's formulation}
The original Durbin's formulation is:
\begin{eqnarray*}
M_{ij}&=&\max\{M_{i-1,j-1}, E_{i-1,j-1}, F_{i-1,j-1}\} + S(i,j)\\
E_{ij}&=&\max\{M_{i-1,j}-q, E_{i-1,j}\} - e\\
F_{ij}&=&\max\{M_{i,j-1}-q, F_{i,j-1}\} - e
\end{eqnarray*}
This formulation disallows a deletion immediately followed an insertion, or
vice versa. A more general form is:
\begin{eqnarray*}
M_{ij}&=&\max\{M_{i-1,j-1}, E_{i-1,j-1}, F_{i-1,j-1}\} + S(i,j)\\
E_{ij}&=&\max\{M_{i-1,j}-q, E_{i-1,j}, F_{i-1,j}-q\} - e\\
F_{ij}&=&\max\{M_{i,j-1}-q, E_{i,j-1}-q, F_{i,j-1}\} - e
\end{eqnarray*}
\subsection{Green's formulation}
If we define:
\[H_{ij}=\max\{M_{ij},E_{ij},F_{ij}\}\]
the Durbin's formulation can be transformed to
\begin{eqnarray*}
E_{ij} &=& \max\{H_{i-1,j}-q, E_{i-1,j}\} - e \\
F_{ij} &=& \max\{H_{i,j-1}-q, F_{i,j-1}\} - e \\
H_{ij} &=& \max\{H_{i-1,j-1}+S(i,j), E_{ij}, F_{ij}\}
\end{eqnarray*}
I first saw this formulation in Phrap developed by Phil Green, though it may
have been used earlier. If we further introduce
\begin{eqnarray*}
E'_{ij}&=&E_{i+1,j}\\
F'_{ij}&=&F_{i,j+1}
\end{eqnarray*}
we have
\begin{eqnarray*}
H_{ij} &=& \max\{H_{i-1,j-1}+S(i,j),E'_{i-1,j},F'_{i,j-1}\}\\
E'_{ij}&=& \max\{H_{ij}-q,E'_{i-1,j}\}-e\\
F'_{ij}&=& \max\{H_{ij}-q,F'_{i,j-1}\}-e
\end{eqnarray*}
In fact, we more often use this set of equations in practical implementations.
The initial conditions are
\begin{eqnarray*}
H_{-1,j}&=&
\left\{\begin{array}{ll}
0 & (j=-1)\\
-q-(j+1)\cdot e & (0\le j<\ell_q)
\end{array}\right.\\
H_{i,-1}&=&
\left\{\begin{array}{ll}
0 & (i=-1)\\
-q-(i+1)\cdot e & (0\le i<\ell_t)
\end{array}\right.\\
E'_{-1,j}&=&E_{0,j}=H_{-1,j}-q-e=-2q-(j+2)\cdot e\\
F'_{i,-1}&=&F_{i,0}=-2q-(i+2)\cdot e
\end{eqnarray*}
\subsection{Suzuki's formulation}
\subsubsection{Standard coordinate}
Now let
\begin{eqnarray*}
u'_{ij}&=&H_{ij}-H_{i-1,j}\\
v'_{ij}&=&H_{ij}-H_{i,j-1}\\
x'_{ij}&=&E'_{ij}-H_{ij}\\
y'_{ij}&=&F'_{ij}-H_{ij}
\end{eqnarray*}
We have
\begin{eqnarray}\label{eq:x}
x'_{ij}&=&\max\{-q,E'_{i-1,j}-H_{i-1,j}+H_{i-1,j}-H_{ij}\}-e\\\nonumber
&=&\max\{-q,x'_{i-1,j}-u'_{ij}\}-e
\end{eqnarray}
Similarly
\begin{equation}
y'_{ij}=\max\{-q,y'_{i,j-1}-v'_{ij}\}-e
\end{equation}
To derive the equation to compute $u'(i,j)$ and $v'(i,j)$, we note that
\begin{eqnarray*}
H_{ij}-H_{i-1,j-1}
&=&\max\{S(i,j),E'_{i-1,j}-H_{i-1,j-1},F'_{i,j-1}-H_{i-1,j-1}\}\\
&=&\max\{S(i,j),x'_{i-1,j}+v'_{i-1,j},y'_{i,j-1}+u'_{i,j-1}\}
\end{eqnarray*}
and
\[H_{ij}-H_{i-1,j-1}=u'_{ij}+v'_{i-1,j}=v'_{ij}+u'_{i,j-1}\]
We can derive the recursive equation for $u'_{ij}$ and $v'_{ij}$:
\begin{eqnarray*}
z'_{ij}&=&\max\{S(i,j),x'_{i-1,j}+v'_{i-1,j},y'_{i,j-1}+u'_{i,j-1}\}\\
u'_{ij}&=&z'_{ij}-v'_{i-1,j}\\
v'_{ij}&=&z'_{ij}-u'_{i,j-1}\\
x'_{ij}&=&\max\{0,x'_{i-1,j}+v'_{i-1,j}-z'_{ij}+q\}-q-e\\
y'_{ij}&=&\max\{0,y'_{i,j-1}+u'_{i,j-1}-z'_{ij}+q\}-q-e
\end{eqnarray*}
From eq.~(\ref{eq:x}) we can infer that $x'_{ij}\ge-q-e$ and similarly
$y'_{ij}\ge-q-e$. We further have:
\[
u'_{ij}=H_{ij}-H_{i-1,j-1}-v'_{i-1,j}\ge x'_{i-1,j}\ge-q-e
\]
Therefore, we have a lower bound $-q-e$ for $u'$, $v'$, $x'$ and $y'$.
This motivates us to redefine the four variables as:
\begin{eqnarray*}
u''_{ij}&=&H_{ij}-H_{i-1,j}+q+e\\
v''_{ij}&=&H_{ij}-H_{i,j-1}+q+e\\
x''_{ij}&=&E'_{ij}-H_{ij}+q+e\\
y''_{ij}&=&F'_{ij}-H_{ij}+q+e
\end{eqnarray*}
The recursion becomes
\begin{eqnarray*}
z''_{ij}&=&\max\{S(i,j)+2q+2e,x''_{i-1,j}+v''_{i-1,j},y''_{i,j-1}+u''_{i,j-1}\}\\
u''_{ij}&=&z''_{ij}-v''_{i-1,j}\\
v''_{ij}&=&z''_{ij}-u''_{i,j-1}\\
x''_{ij}&=&\max\{0,x''_{i-1,j}-u''_{ij}+q\}=\max\{0,x''_{i-1,j}+v''_{i-1,j}-z''_{ij}+q\}\\
y''_{ij}&=&\max\{0,y''_{i,j-1}-v''_{ij}+q\}=\max\{0,y''_{i,j-1}+u''_{i,j-1}-z''_{ij}+q\}
\end{eqnarray*}
Here $z_{ij}$ is a temporary variable. $u''$, $v''$, $x''$ and $y''$ are all
non-negtive.
\subsubsection{Rotated coordinate}
We let
\begin{eqnarray*}
r&=&i+j\\
t&=&i
\end{eqnarray*}
We have
\begin{eqnarray*}
z_{rt}&=&\max\{S(t,r-t)+2q+2e,x_{r-1,t-1}+v_{r-1,t-1},y_{r-1,t}+u_{r-1,t}\}\\
u_{rt}&=&z_{rt}-v_{r-1,t-1}\\
v_{rt}&=&z_{rt}-u_{r-1,t}\\
x_{rt}&=&\max\{0,x_{r-1,t-1}+v_{r-1,t-1}-z_{rt}+q\}\\
y_{rt}&=&\max\{0,y_{r-1,t}+u_{r-1,t}-z_{rt}+q\}
\end{eqnarray*}
Due to the definition of $r$ and $t$, the following inequation must stand:
\[0\le r-t \le\ell_q-1\]
\[0\le t \le\ell_t-1\]
where $\ell_t$ is the length of the sequence indexed by $i$ and $\ell_q$ the
length indexed by $j$. In case of banded alignment with a fixed diagonal band
of size $w$,
\[-w\le j-i\le w\]
In the $(r,t)$ coordinate, it is:
\[\frac{r-w}{2}\le t\le \frac{r+w}{2}\]
Putting these together:
\[0\le r\le \ell_q+\ell_t-2\]
\[\max\left\{0,r-\ell_q+1,\frac{r-w}{2}\right\}\le t\le\min\left\{\ell_t-1,r,\frac{r+w}{2}\right\}\]
\subsubsection{Initial conditions}
\[x_{r-1,-1}=x''_{-1,r}=E'_{-1,r}-H_{-1,r}+q+e=0\]
\[y_{r-1,r}=y''_{r,-1}=0\]
\[v_{r-1,-1}=v''_{-1,r}=H_{-1,r}-H_{-1,r-1}+q+e=\left\{\begin{array}{ll}
q & (r>0) \\
0 & (r=0)
\end{array}\right.\]
\[u_{r-1,r}=u''_{r,-1}=H_{r,-1}-H_{r-1,-1}+q+e=\left\{\begin{array}{ll}
q & (r>0) \\
0 & (r=0)
\end{array}\right.\]
\section{Alignment with dual affine-gap penalties}
\subsection{Green's formulation}
\begin{eqnarray*}
H_{ij} &=& \max\{H_{i-1,j-1}+S(i,j),E'_{i-1,j},F'_{i,j-1},\tilde{E}'_{i-1,j},\tilde{F}'_{i,j-1}\}\\
E'_{ij}&=& \max\{H_{ij}-q,E'_{i-1,j}\}-e\\
F'_{ij}&=& \max\{H_{ij}-q,F'_{i,j-1}\}-e\\
\tilde{E}'_{ij}&=& \max\{H_{ij}-\tilde{q},\tilde{E}'_{i-1,j}\}-\tilde{e}\\
\tilde{F}'_{ij}&=& \max\{H_{ij}-\tilde{q},\tilde{F}'_{i,j-1}\}-\tilde{e}
\end{eqnarray*}
The initial conditions are:
\begin{eqnarray*}
H_{-1,j}&=&
\left\{\begin{array}{ll}
0 & (j=-1)\\
\max\{-q-(j+1)\cdot e,-\tilde{q}-(j+1)\cdot\tilde{e}\} & (0\le j<\ell_q)
\end{array}\right.\\
H_{i,-1}&=&
\left\{\begin{array}{ll}
0 & (i=-1)\\
\max\{-q-(i+1)\cdot e,-\tilde{q}-(i+1)\cdot\tilde{e}\} & (0\le i<\ell_t)
\end{array}\right.\\
E'_{-1,j}&=&E_{0,j}=H_{-1,j}-q-e\\
F'_{i,-1}&=&F_{i,0}=H_{i,-1}-q-e\\
\tilde{E}'_{-1,j}&=&\tilde{E}_{0,j}=H_{-1,j}-\tilde{q}-\tilde{e}\\
\tilde{F}'_{i,-1}&=&\tilde{F}_{i,0}=H_{i,-1}-\tilde{q}-\tilde{e}
\end{eqnarray*}
\subsection{Suzuki's formulation}
\begin{eqnarray*}
z'_{ij}&=&\max\{S(i,j),x'_{i-1,j}+v'_{i-1,j},y'_{i,j-1}+u'_{i,j-1},\\
&&\tilde{x}'_{i-1,j}+v'_{i-1,j},\tilde{y}'_{i,j-1}+u'_{i,j-1}\}\\
u'_{ij}&=&z'_{ij}-v'_{i-1,j}\\
v'_{ij}&=&z'_{ij}-u'_{i,j-1}\\
x'_{ij}&=&\max\{0,x'_{i-1,j}+v'_{i-1,j}-z'_{ij}+q\}-q-e\\
y'_{ij}&=&\max\{0,y'_{i,j-1}+u'_{i,j-1}-z'_{ij}+q\}-q-e\\
\tilde{x}'_{ij}&=&\max\{0,\tilde{x}'_{i-1,j}+v'_{i-1,j}-z'_{ij}+\tilde{q}\}-\tilde{q}-\tilde{e}\\
\tilde{y}'_{ij}&=&\max\{0,\tilde{y}'_{i,j-1}+u'_{i,j-1}-z'_{ij}+\tilde{q}\}-\tilde{q}-\tilde{e}
\end{eqnarray*}
In the rotated coordinate:
\begin{eqnarray*}
z_{rt}&=&\max\{S(t,r-t),x_{r-1,t-1}+v_{r-1,t-1},y_{r-1,t}+u_{r-1i,t},\\
&&\tilde{x}_{r-1,t-1}+v_{r-1,t-1},\tilde{y}_{r-1,t}+u_{r-1,t}\}\\
u_{rt}&=&z_{rt}-v_{r-1,t-1}\\
v_{rt}&=&z_{rt}-u_{r-1,t}\\
x_{rt}&=&\max\{0,x_{r-1,t-1}+v_{r-1,t-1}-z_{rt}+q\}-q-e\\
y_{rt}&=&\max\{0,y_{r-1,t}+u_{r-1,t}-z_{rt}+q\}-q-e\\
\tilde{x}_{rt}&=&\max\{0,\tilde{x}_{r-1,t-1}+v_{r-1,t-1}-z_{rt}+\tilde{q}\}-\tilde{q}-\tilde{e}\\
\tilde{y}_{rt}&=&\max\{0,\tilde{y}_{r-1,t}+u_{r-1,t}-z_{rt}+\tilde{q}\}-\tilde{q}-\tilde{e}
\end{eqnarray*}
By definition, it is easy to see the initial conditions except $u$ and $v$:
\[x_{r-1,-1}=x'_{-1,r}=E'_{-1,r}-H_{-1,r}=-q-e\]
\[y_{r-1,r}=y'_{r,-1}=F'_{r,-1}-H_{r,-1}=-q-e\]
\[\tilde{x}_{r-1,-1}=-\tilde{q}-\tilde{e}\]
\[\tilde{y}_{r-1,-1}=-\tilde{q}-\tilde{e}\]
\[v_{r-1,-1}=H_{-1,r}-H_{-1,r-1}=\left\{\begin{array}{ll}
\max\{-q-e,-\tilde{q}-\tilde{e}\} & (r=0)\\
-e & (r<\lceil\frac{\tilde{q}-q}{e-\tilde{e}}-1\rceil)\\
r(e-\tilde{e})-(\tilde{q}-q)-\tilde{e} & (r=\lceil\frac{\tilde{q}-q}{e-\tilde{e}}-1\rceil)\\
-\tilde{e} & (r>\lceil\frac{\tilde{q}-q}{e-\tilde{e}}-1\rceil)
\end{array}\right.\]
\end{document}