forked from johndpope/CryptoCurrencyTrader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstrategy_evaluation.py
146 lines (105 loc) · 6.66 KB
/
strategy_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
from matplotlib import pyplot as plt
def strategy_profit(currency_position, fractional_price, strategy_dictionary):
buy_sell_length = len(currency_position)
portfolio_value = np.ones(buy_sell_length)
for index in range(1, buy_sell_length):
if ((currency_position[index - 1] == 0) & (currency_position[index] == 1))\
| ((currency_position[index - 1] == 1) & (currency_position[index] == 0)):
portfolio_value[index] = (1 - strategy_dictionary['transaction_fee']
- strategy_dictionary['bid_ask_spread']) * portfolio_value[index - 1]
elif (currency_position[index - 1] == 1) & (currency_position[index] == 1):
portfolio_value[index] = portfolio_value[index - 1] * fractional_price[index - 1]
else:
portfolio_value[index] = portfolio_value[index - 1]
return portfolio_value
def convert_to_currency_position(buy_sell):
buy_sell_length = len(buy_sell)
currency_position = np.zeros(len(buy_sell))
for index in range(len(currency_position)):
currency_position[index] = buy_sell[index]
currency_position[buy_sell == -1] = 0
while_counter = 0
while (index + while_counter < buy_sell_length) and (buy_sell[index + while_counter] == 0):
currency_position[index + while_counter] = currency_position[index + while_counter - 1]
while_counter += 1
return currency_position
def number_of_trades_from_currency_position(currency_position):
return np.sum(np.abs(np.diff(currency_position)))
def convert_score_to_buy_sell(strategy_score, buy_threshold, sell_threshold):
buy_sell = np.zeros(len(strategy_score))
buy_sell[strategy_score > buy_threshold] = 1
buy_sell[strategy_score <= sell_threshold] = -1
return buy_sell
def convert_strategy_score_to_profit(strategy_local, buy_threshold, sell_threshold, fractional_close,
strategy_dictionary):
fitted_buy_sell = convert_score_to_buy_sell(strategy_local, buy_threshold, sell_threshold)
fitted_currency_position = convert_to_currency_position(fitted_buy_sell)
number_of_trades = number_of_trades_from_currency_position(fitted_currency_position)
return strategy_profit(fitted_currency_position, fractional_close, strategy_dictionary), number_of_trades
def post_process_regression_results(fitting_dictionary, strategy_dictionary, fractional_close):
profit_optimum = -1e5
for buy_threshold in np.linspace(min(fitting_dictionary['fitted_strategy_score']),
max(fitting_dictionary['fitted_strategy_score']), 50):
for sell_threshold in np.linspace(min(fitting_dictionary['fitted_strategy_score']),
max(fitting_dictionary['fitted_strategy_score']), 50):
portfolio_value, n_trades = convert_strategy_score_to_profit(
(fitting_dictionary['fitted_strategy_score']), buy_threshold, sell_threshold,
fractional_close[fitting_dictionary['test_indices']], strategy_dictionary)
profit_fraction = strategy_profit_score(portfolio_value, n_trades)
if profit_optimum < profit_fraction:
fitting_dictionary['buy_threshold'] = buy_threshold
fitting_dictionary['sell_threshold'] = sell_threshold
fitting_dictionary['number_of_trades'] = n_trades
profit_optimum = profit_fraction
fitting_dictionary['portfolio_value'], fitting_dictionary['n_trades'] = convert_strategy_score_to_profit(
(fitting_dictionary['validation_strategy_score']), fitting_dictionary['buy_threshold'],
fitting_dictionary['sell_threshold'], fractional_close[fitting_dictionary['validation_indices']],
strategy_dictionary)
return fitting_dictionary
def post_process_classification_results(fitting_dictionary, strategy_dictionary, fractional_close):
fitted_currency_position = convert_to_currency_position(fitting_dictionary['validation_strategy_score'])
number_of_trades = number_of_trades_from_currency_position(fitted_currency_position)
fitting_dictionary['portfolio_value'] = strategy_profit(fitted_currency_position, fractional_close[
fitting_dictionary['validation_indices']], strategy_dictionary)
fitting_dictionary['n_trades'] = number_of_trades
return fitting_dictionary
def post_process_training_results(strategy_dictionary, fitting_dictionary, data):
if strategy_dictionary['regression_mode'] == 'classification':
return post_process_classification_results(fitting_dictionary, strategy_dictionary, data.fractional_close)
elif strategy_dictionary['regression_mode'] == 'regression':
return post_process_regression_results(fitting_dictionary, strategy_dictionary, data.fractional_close)
def strategy_profit_score(strategy_profit_local, number_of_trades):
profit_fraction = strategy_profit_local[-1] / np.min(strategy_profit_local)
if number_of_trades == 0:
profit_fraction = -profit_fraction
return profit_fraction
def draw_down(strategy_profit_local):
draw_down_temp = np.diff(strategy_profit_local)
draw_down_temp[draw_down_temp > 0] = 0
return np.mean(draw_down_temp)
def output_strategy_results(strategy_dictionary, fitting_dictionary, data_to_predict, toc):
prediction_data = data_to_predict.close[fitting_dictionary['validation_indices']]
profit_factor = []
if strategy_dictionary['output_flag']:
print "Fitting time: ", toc()
profit_factor = fitting_dictionary['portfolio_value'][-1] * prediction_data[0]\
/ (fitting_dictionary['portfolio_value'][0] * prediction_data[-1]) - 1
print "Fractional profit compared to buy and hold: ", profit_factor
print "Mean squared error: ", fitting_dictionary['error']
print "Number of days: ", strategy_dictionary['n_days']
print "Candle time period:", strategy_dictionary['candle_size']
print "Fitting model: ", strategy_dictionary['ml_mode']
print "Regression/classification: ", strategy_dictionary['regression_mode']
print "Number of trades: ", fitting_dictionary['n_trades']
print "Offset: ", strategy_dictionary['offset']
print "\n"
if strategy_dictionary['plot_flag']:
plt.figure(1)
close_price = plt.plot(prediction_data)
portfolio_value = plt.plot(prediction_data[0] * fitting_dictionary['portfolio_value'])
plt.legend([close_price, portfolio_value], ['Close Price', 'Portfolio Value'])
plt.xlabel('Candle number')
plt.ylabel('USDT-Bitcoin exchange rate')
plt.show()
return profit_factor