diff --git a/README.md b/README.md index 4b10200..a3f1b91 100644 --- a/README.md +++ b/README.md @@ -21,7 +21,6 @@ - [Machine Learning](#machine-learning) - [General Purpose Machine Learning](#general-purpose-machine-learning) - [Gradient Boosting](#gradient-boosting) - - [Automated Machine Learning](#automated-machine-learning) - [Ensemble Methods](#ensemble-methods) - [Imbalanced Datasets](#imbalanced-datasets) - [Random Forests](#random-forests) @@ -33,6 +32,7 @@ - [MXNet](#mxnet) - [JAX](#jax) - [Others](#others) +- [Automated Machine Learning](#automated-machine-learning) - [Time Series](#time-series) - [Natural Language Processing](#natural-language-processing) - [Computer Audition](#computer-audition) @@ -105,14 +105,6 @@ * [NGBoost](https://github.com/stanfordmlgroup/ngboost) - Natural Gradient Boosting for Probabilistic Prediction. * [TensorFlow Decision Forests](https://github.com/tensorflow/decision-forests) - A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras. keras TensorFlow -### Automated Machine Learning -* [auto-sklearn](https://github.com/automl/auto-sklearn) - An AutoML toolkit and a drop-in replacement for a scikit-learn estimator. sklearn -* [Auto-PyTorch](https://github.com/automl/Auto-PyTorch) - Automatic architecture search and hyperparameter optimization for PyTorch. PyTorch based/compatible -* [AutoKeras](https://github.com/keras-team/autokeras) - AutoML library for deep learning. Keras compatible -* [AutoGluon](https://github.com/awslabs/autogluon) - AutoML for Image, Text, Tabular, Time-Series, and MultiModal Data. -* [TPOT](https://github.com/rhiever/tpot) - AutoML tool that optimizes machine learning pipelines using genetic programming. sklearn -* [MLBox](https://github.com/AxeldeRomblay/MLBox) - A powerful Automated Machine Learning python library. - ### Ensemble Methods * [ML-Ensemble](http://ml-ensemble.com/) - High performance ensemble learning. sklearn * [Stacking](https://github.com/ikki407/stacking) - Simple and useful stacking library written in Python. sklearn @@ -187,6 +179,14 @@ * [Caffe](https://github.com/BVLC/caffe) - A fast open framework for deep learning. * [nnabla](https://github.com/sony/nnabla) - Neural Network Libraries by Sony. +## Automated Machine Learning +* [auto-sklearn](https://github.com/automl/auto-sklearn) - An AutoML toolkit and a drop-in replacement for a scikit-learn estimator. sklearn +* [Auto-PyTorch](https://github.com/automl/Auto-PyTorch) - Automatic architecture search and hyperparameter optimization for PyTorch. PyTorch based/compatible +* [AutoKeras](https://github.com/keras-team/autokeras) - AutoML library for deep learning. Keras compatible +* [AutoGluon](https://github.com/awslabs/autogluon) - AutoML for Image, Text, Tabular, Time-Series, and MultiModal Data. +* [TPOT](https://github.com/rhiever/tpot) - AutoML tool that optimizes machine learning pipelines using genetic programming. sklearn +* [MLBox](https://github.com/AxeldeRomblay/MLBox) - A powerful Automated Machine Learning python library. + ## Time Series * [sktime](https://github.com/alan-turing-institute/sktime) - A unified framework for machine learning with time series. sklearn * [darts](https://github.com/unit8co/darts) - A python library for easy manipulation and forecasting of time series.