usage: runner.py [-h] [--config CONFIG] [--log LOG] [--regressor REGRESSOR]
[--trees TREES] [--features FEATURES] [--depth DEPTH]
[--seed SEED] [--criterion CRITERION] [--bagging BAGGING]
[--data DATA] [--labels LABELS] [--results RESULTS] [--shell]
WaveletsForestRegressor runner. Use "python -m pydoc random_forest" or see
"random_forest.html" for more details.
optional arguments:
-h, --help show this help message and exit
--config CONFIG
--log LOG Logging level. Default is INFO.
--regressor REGRESSOR
Regressor type. Either "rf" or
"decision_tree_with_bagging". Default is "rf".
--trees TREES Number of trees in the forest. Default is 5.
--features FEATURES Features to consider in each split. Same options as
sklearn's DecisionTreeRegressor.
--depth DEPTH Maximum depth of each tree. Default is 9. Use 0 for
unlimited depth.
--seed SEED Seed for random operations. Default is 2000.
--criterion CRITERION
Splitting criterion. Same options as sklearn's
DecisionTreeRegressor. Default is "mse".
--bagging BAGGING Bagging. Only available when using the
"decision_tree_with_bagging" regressor. Default is
0.8.
--data DATA Training data csv path. Default is "trainingData.csv".
--labels LABELS Training labels csv path. Default is
"trainingLabel.csv".
--results RESULTS Results save path.
--shell Drop into python shell after calculating smoothness.
Default is False.