-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_and_search_kd_tree.py
131 lines (101 loc) · 3.69 KB
/
build_and_search_kd_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Build and search in a 2D K-d tree
# by Karen Araceli Palacio Pastor
# July 2023
class Node2D:
def __init__(self, point):
self.point = point
self.left = None
self.right = None
def build_kd_tree(points, depth=0):
if not points:
return None
k = len(points[0]) # Dimension of the points, k=2 for 2D
axis = depth % k
sorted_points = sorted(points, key=lambda point: point[axis])
mid = len(sorted_points) // 2
node = Node2D(sorted_points[mid])
node.left = build_kd_tree(sorted_points[:mid], depth + 1)
node.right = build_kd_tree(sorted_points[mid + 1:], depth + 1)
return node
# Data points for 2D K-d tree construction
data_points =[
(51, 75),
(25, 40),
(70, 70),
(10, 30),
(35, 90),
(60, 80),
(1, 10),
(55, 1),
]
root_node = build_kd_tree(data_points)
# Now, the 'root_node' represents the root of the constructed 2D K-d tree.
# Function to print 2D K-d tree with ASCII art
def print_kd_tree_ascii(node, depth=0, prefix="Root: "):
if node is None:
return
k = len(node.point)
axis = depth % k
# Print the current node
print(" " * (depth * 4) + prefix + f"{node.point}")
# Recursively print the left subtree
print_kd_tree_ascii(node.left, depth + 1, "Left: ")
# Recursively print the right subtree
print_kd_tree_ascii(node.right, depth + 1, "Right: ")
print_kd_tree_ascii(root_node)
def calculate_euclidean_distance_KD(point1, point2):
return sum((x - y) ** 2 for x, y in zip(point1, point2)) ** 0.5
# Recursive function to find K-dimensional points within the radius R
def find_points_within_radius_KD(node, query_point, R, depth=0):
if node is None:
return []
distance = calculate_euclidean_distance_KD(node.point, query_point)
result_list = []
if distance <= R:
result_list.append(node.point)
k = len(query_point)
dim = depth % k
if node.point[dim] >= query_point[dim] - R:
result_list.extend(find_points_within_radius_KD(node.left, query_point, R, depth + 1))
if node.point[dim] <= query_point[dim] + R:
result_list.extend(find_points_within_radius_KD(node.right, query_point, R, depth + 1))
return result_list
# Usage example for K-dimensional points:
query_point = (25,65)
# in a K-dim query point, query_point would look like
# query_point = (q_x1, q_x2, q_x3, ..., q_xK)
# Comb through the kd tree with different Rs
R = 25
result_list = find_points_within_radius_KD(root_node, query_point, R)
print("\********************/")
print("searching elements within EUCL distance of: "+ str(R))
print(result_list)
print("The corresponding distances are:")
print([calculate_euclidean_distance_KD(node, query_point) for node in result_list])
R=30
result_list = find_points_within_radius_KD(root_node, query_point, R)
print()
print("\********************/")
print("searching elements within EUCL distance of: "+ str(R))
print(result_list)
print()
print("The corresponding distances are:")
print([calculate_euclidean_distance_KD(node, query_point) for node in result_list])
R=40
result_list = find_points_within_radius_KD(root_node, query_point, R)
print()
print("\********************/")
print("searching elements within EUCL distance of: "+ str(R))
print(result_list)
print()
print("The corresponding distances are:")
print([calculate_euclidean_distance_KD(node, query_point) for node in result_list])
R=50
result_list = find_points_within_radius_KD(root_node, query_point, R)
print()
print("\********************/")
print("searching elements within EUCL distance of: "+ str(R))
print(result_list)
print()
print("The corresponding distances are:")
print([calculate_euclidean_distance_KD(node, query_point) for node in result_list])