-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_full_debiasing.py
112 lines (91 loc) · 3.27 KB
/
run_full_debiasing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import torch
import wandb
from conf.probe.probe_configs import probe_configs
from fair.utils import generate_run_name, get_mod_weights_module
from train_adversarial import train_adversarial
from train_mmd import train_mmd
from train_probe import train_probe
from utilities.utils import generate_id
WANDB_PROJECT = 'modprotodebias'
run_id = generate_id()
debias_conf = {
# --- General --- #
'dataset': 'lfm2bdemobias',
'group_type': 'gender',
'delta_on': 'users',
# --- Model --- #
'inner_layers_config': [512],
'use_clamping': False,
# --- Training --- #
'n_epochs': 25,
# 'lam_rec': 0, # Watch out for this one. Use it only for debugging purposes.
# Debiasing
'debiasing_method': 'adv', # 'adv' or 'mmd'
'how_use_deltas': 'multiply', # 'add' or 'multiply'
'lam': 1., # Strength of the debiasing
'init_std': 0.01,
'gradient_scaling': 1., # Ignored if debiasing_method == 'mmd'
'adv_n_heads': 1, # Ignored if debiasing_method == 'mmd'
'user_updates_normalization': 'none', # 'none', 'mean', 'max', 'min'. Ignored if debiasing_method == 'mmd'
# Learning Rates
'lr_adv': 1e-3, # Ignored if debiasing_method == 'mmd'
'lr_deltas': 5e-5,
'wd': 1e-5,
'eta_min': 1e-6,
# Batch Sizes
'train_batch_size': 128,
'eval_batch_size': 32,
# --- Others --- #
'device': 'cuda',
'seed': 59,
'verbose': True,
'running_settings': {'eval_n_workers': 2, 'train_n_workers': 6},
'run_id': run_id,
'save_path': f'./saved_models/baseline/{run_id}/',
}
# Change here if you want to give your run a different name
run_name = generate_run_name(debias_conf, ['debiasing_method', 'lam', 'lr_deltas', 'seed', 'run_id'])
wandb.init(project=WANDB_PROJECT, config=debias_conf, name=run_name)
print("------ Debiasing -----")
if debias_conf['debiasing_method'] == 'adv':
print("Using Adversarial Debiasing")
n_delta_sets, user_to_delta_set = train_adversarial(debias_conf)
elif debias_conf['debiasing_method'] == 'mmd':
print("Using MMD Debiasing")
n_delta_sets, user_to_delta_set = train_mmd(debias_conf)
else:
raise ValueError(f"Unknown debiasing method: {debias_conf['debiasing_method']}")
print("----- Debiasing is over -----")
print("----- Starting Final Attack -----")
# Refer to the ./conf/probe/probe_configs.py file for the configuration
probe_config = probe_configs[debias_conf['dataset']][debias_conf['group_type']]
# Additional options
probe_config = {
**probe_config,
# --- Others --- #
'device': 'cuda',
'seed': debias_conf['seed'],
'verbose': True,
'running_settings': {'eval_n_workers': 2, 'train_n_workers': 8},
}
# Modular Weights
mod_weights = get_mod_weights_module(
how_use_deltas=debias_conf['how_use_deltas'],
latent_dim=debias_conf['latent_dim'],
n_delta_sets=n_delta_sets,
user_to_delta_set=user_to_delta_set,
use_clamping=debias_conf['use_clamping']
)
mod_weights_state_dict = torch.load(
os.path.join(debias_conf['save_path'], 'last.pth'), map_location=probe_config['device']
)['mod_weights']
mod_weights.load_state_dict(mod_weights_state_dict)
mod_weights.requires_grad_(False)
train_probe(
probe_config=probe_config,
eval_type='test',
wandb_log_prefix=f'final_',
mod_weights=mod_weights
)
wandb.finish()