-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynamo_node.py
999 lines (827 loc) · 43.7 KB
/
dynamo_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
from dynamo_pb2_grpc import DynamoInterfaceServicer
from typing import List, Tuple, Dict, Union
from dynamo_pb2 import PutResponse, GetResponse, PutRequest, GetRequest, ReplicateResponse, MemResponse, ReadResponse, ReadItem, Memory, VectorClockItem, FailRequest, HeartbeatRequest, DataBunchRequest, DataBunchResponse
from partitioning import createtoken2node, find_owner, get_preference_list_for_token, get_ranges
from structures import NetworkParams, Params, FutureInformation
from typing import List, Tuple, Dict, Union, Set
from dynamo_pb2_grpc import DynamoInterfaceStub
import grpc
import threading
import time
import concurrent
import random
import time
import sys
import logging
def replicate_rpc(view, rep_n, request) -> ReplicateResponse:
"""
Send a RPC call to a process telling it to replicate the request in it's memory
"""
port = view[rep_n]
with grpc.insecure_channel(f"localhost:{port}") as channel:
stub = DynamoInterfaceStub(channel)
response = stub.Replicate(request)
return response
def read_rpc(view, rep_n, request) -> ReadResponse:
"""
Send a RPC call to a process telling it to read the data corresponding to a key
"""
port = view[rep_n]
with grpc.insecure_channel(f"localhost:{port}") as channel:
stub = DynamoInterfaceStub(channel)
response = stub.Read(request)
return response
def heartbeat_rpc(view: Dict[int, int], rep_n: int, request: HeartbeatRequest) -> HeartbeatRequest:
"""
Send a RPC call to a process telling it to read the data corresponding to a key
"""
port = view[rep_n]
with grpc.insecure_channel(f"localhost:{port}") as channel:
stub = DynamoInterfaceStub(channel)
response = stub.Heartbeat(request)
return response
def transfer_data_rpc(view: Dict[int, int], rep_n: int, request: DataBunchRequest) -> DataBunchResponse:
"""
Send a RPC call to a process telling it to add the following data to it's memory buffer
"""
port = view[rep_n]
with grpc.insecure_channel(f"localhost:{port}") as channel:
stub = DynamoInterfaceStub(channel)
response = stub.TransferData(request)
return response
class DynamoNode(DynamoInterfaceServicer):
"""
This class is the entry point to a dynamo node.
"""
def __init__(self, n_id: int, view: Dict[int, str],
membership_information: Dict[int, List[int]], params: Params,
network_params: NetworkParams, logger: logging.Logger):
"""
view: dict indexed by node id, value is the address of the node
membership_information: dict indexed by node id, gives set of tokens for each node.
Each token states the starting point of a virtual node which is of size `Q` (see `Params`).
params: Stores config information of the dynamo ring
"""
super().__init__()
self.params = params
self.network_params = network_params
self.logger = logger
self.n_id = n_id
# tokens given to various nodes in the ring: bootstrapped information
self.membership_information = membership_information
# list of address to other nodes, indexed by node id
self.view = view
# whether set node to fail
self.fail = False
self.token2node = createtoken2node(membership_information)
# in memory data store of key, values
self.memory_of_node_lock = threading.Lock()
self.memory_of_node: Dict[int, PutRequest] = {}
self.memory_of_replicas_lock = threading.Lock()
self.memory_of_replicas: Dict[int, Memory] = {}
# local view of failed nodes
self.failed_node_lock = threading.Lock()
self.failed_nodes: Set[int] = set({})
# keep track of all tokems used by a request
self.tokens_used: Dict[int, List[int]] = {}
# gossip protocol
if self.params.gossip == True:
self.start_gossip_protocol()
def scan_and_send(self, n_id):
self.logger.debug(f"[scan_and_send] in this function at {self.n_id} sending info to {n_id} Init....")
vals_to_send = []
self.memory_of_replicas_lock.acquire()
for k, mem_of_n in self.memory_of_replicas.items():
# iterate over memory of all n's
for key, val in mem_of_n.mem.items():
if val.hinted_handoff == n_id:
vals_to_send.append(val)
self.memory_of_replicas_lock.release()
if vals_to_send == []:
# nothing to send
return
self.logger.debug(f"--------Vals to send ? {vals_to_send}")
executor = concurrent.futures.ThreadPoolExecutor(max_workers=8)
request = DataBunchRequest(sent_from=self.n_id, requests=vals_to_send)
self.logger.debug(f"[scan_and_send] Sending request.... in this function at {self.n_id} sending info to {n_id}")
def catch_callback(fut):
"""
If future returns successfully, then we can go ahead and remove the extra
stuff from the local memory
"""
nonlocal vals_to_send
if fut.exception() or fut.result().succ == False:
self.logger.error(f"Error received in [Tranferring Data], reverse health of the node {n_id}")
self.update_failed_nodes(n_id)
else:
self.logger.info(f"Success in transferring data at node {n_id}, we can delete our data now...")
to_del = []
self.memory_of_replicas_lock.acquire()
for k, mem_of_n in self.memory_of_replicas.items():
# iterate over memory of all n's
for key, val in mem_of_n.mem.items():
if val in vals_to_send:
to_del.append((k, key))
for k1,k2 in to_del:
del self.memory_of_replicas[k1].mem[k2]
self.logger.info(f"Deletion of {n_id}'s hinted handoff information successful")
self.memory_of_replicas_lock.release()
fut = executor.submit(transfer_data_rpc, self.view, n_id, request)
fut.add_done_callback(catch_callback)
def start_gossip_protocol(self):
# start a thread in the background that pings random nodes to determine health
executor = concurrent.futures.ThreadPoolExecutor(max_workers=8)
mem_lock = threading.Lock()
fut2req = {}
def get_heartbeat(fut):
self.logger.debug(f"[get_heartbeat] in this function at {self.n_id} initing...")
nonlocal mem_lock
nonlocal fut2req
if fut.exception():
# heartbeat failed, add node to unhealthy
self.logger.debug(f"[get_heartbeat] exception !")
mem_lock.acquire()
bad_n_id = fut2req[fut]
mem_lock.release()
self.logger.error(f"Future at node {self.n_id}/{self.view[self.n_id]} for node {bad_n_id}/{self.view[bad_n_id]} had exception {fut.exception()}")
self.update_failed_nodes(bad_n_id, remove=False)
else:
# all good with node, do nothing !
self.logger.debug(f"[get_heartbeat] all good, init for scanning and sending !")
res = fut.result()
if res.succ != True:
# all bad
self.logger.debug(f"[get_heartbeat] all good, bad node updating health")
self.update_failed_nodes(res.sent_to, remove=False)
else:
self.logger.debug(f"[get_heartbeat] all good, good node updating health")
self.update_failed_nodes(res.sent_to, remove=True)
# do scan in replica memory and send it to responsible node
self.scan_and_send(res.sent_to)
self.logger.debug(f"[get_heartbeat] all good path, everything done !")
# delete fut from dict, to prevent memeory leak
mem_lock.acquire()
del fut2req[fut]
mem_lock.release()
self.logger.debug(f"[get_heartbeat] in this function at {self.n_id} wrapped up everything.")
def ping_random_node():
nonlocal executor
nonlocal mem_lock
nonlocal fut2req
while True:
self.logger.debug(f"[ping_random_node] {self.n_id} Trying to send another heartbeat !")
time.sleep(random.uniform(self.params.gossip_update_time[0], self.params.gossip_update_time[1]))
if not self.fail:
n_id = self.n_id
while n_id == self.n_id:
n_id = random.randint(0,self.params.num_proc-1)
request = HeartbeatRequest(sent_to=n_id, from_n=self.n_id)
fut = executor.submit(heartbeat_rpc, self.view, n_id, request)
fut.add_done_callback(get_heartbeat)
mem_lock.acquire()
fut2req[fut] = n_id
mem_lock.release()
fut = executor.submit(ping_random_node)
def TransferData(self, request: DataBunchRequest, context):
"""
Adds all data to it's replica buffer or it's memory buffer ?
1. if data is being transferred, then assumption is that it will be transferred to replica mem
2. If coordinator node goes down, then some other node should take it's place, with hinted handoff.
For each data item, check if key makes it current nodes owner, if not, then store in replic memory
TODO: add locks
"""
self.logger.info(f"[TransferData] at node = {self.n_id} at port {self.view[self.n_id]}")
self._check_add_latency()
if self.fail:
self.logger.error(f"Node {self.n_id} at {self.view[self.n_id]} is set to fail, fail it !")
raise concurrent.futures.CancelledError # retirning None will result in failure
try:
all_reqs = request.requests
for req in all_reqs:
key = req.key
req.hinted_handoff = -1
n_id = find_owner(key, self.params, self.token2node)
if n_id != self.n_id:
self._add_to_hash_table(req, add_to_replica=True, coord_id=n_id)
else:
self._add_to_hash_table(req)
return DataBunchResponse(sent_from=self.n_id, succ=True)
except:
self.logger.error(f"Error with [TransferData] at node = {self.n_id} at port {self.view[self.n_id]}")
return DataBunchResponse(sent_from=self.n_id, succ=False)
def Get(self, request: GetRequest, context):
"""
Get request
"""
self.logger.info(f"[GET] called by client {request.client_id} for key: {request.key} at node {self.n_id} at port {self.view[self.n_id]}")
self._check_add_latency()
if self.fail:
self.logger.error(f"Node {self.n_id} at {self.view[self.n_id]} is set to fail, fail it !")
raise concurrent.futures.CancelledError # retirning None will result in failure
response: GetResponse = self._get_from_memory(request)
return response
def Heartbeat(self, request: GetRequest, context):
"""
Get request
"""
self.logger.info(f"[Heartbeat] called by client {request.from_n} at node {self.n_id} at port {self.view[self.n_id]}")
self._check_add_latency()
if self.fail:
self.logger.error(f"Node {self.n_id} at {self.view[self.n_id]} is set to fail, fail it !")
raise concurrent.futures.CancelledError # retirning None will result in failure
request.succ = True
return request
def Read(self, request: GetRequest, context):
"""
Read request
Assumes current node has key
"""
self.logger.info(f"[Read] called for key {request.key} at node {self.n_id} at port {self.view[self.n_id]}")
self._check_add_latency()
if self.fail:
self.logger.error(f"Node {self.n_id} at {self.view[self.n_id]} is set to fail, fail it !")
raise concurrent.futures.CancelledError # retirning None will result in failure
# try:
req_token = request.key // self.params.Q
node = self.token2node[req_token]
if self.n_id == node:
response = self._get_from_hash_table(request.key)
else:
response = self._get_from_hash_table(request.key, coord_nid=request.coord_nid, from_replica=True)
return response
# except:
# self.logger.error(f"[Exception in READ] for Key={request.key} at Nid/Port: {self.n_id}/{self.view[self.n_id]} | Owner of this key is {node} | Exception is {sys.exc_info()[0]}")
# response: ReadResponse = ReadResponse(succ=False)
return response
def Put(self, request: PutRequest , context):
"""
Put Request
"""
self.logger.info(f"[Put] called for key {request.key} at node {self.n_id} at port {self.view[self.n_id]}")
self._check_add_latency()
if self.fail:
self.logger.error(f"Node {self.n_id} is set to fail")
raise concurrent.futures.CancelledError # retirning None will result in failure
try:
# add to memory
response: PutResponse = self._add_to_memory(request, request_type="put")
self.logger.info(f"[Put] sending a response back {response}")
except:
self.logger.error(f"[Exception in Put] for Key={request.key} at Nid/Port: {self.n_id}/{self.view[self.n_id]} | Exception is {sys.exc_info()[0]} ")
response = PutResponse(succ=False)
return response
def Replicate(self, request: PutRequest , context):
"""
Replicate Request
"""
self.logger.info(f"[Replicate] called for key {request.key} at node {self.n_id}")
self._check_add_latency()
if self.fail:
self.logger.error(f"Node {self.n_id} is set to fail, fail it !")
raise concurrent.futures.CancelledError # retirning None will result in failure
# find token for key
req_token = request.key // self.params.Q
# find node for token
node = self.token2node[req_token]
# add to memory
if self.n_id == node:
self._add_to_hash_table(request)
else:
self._add_to_hash_table(request, add_to_replica=True, coord_id=request.coord_nid)
# construct replicate response
response = ReplicateResponse(server_id=self.n_id,
metadata="Replication successful",
succ=True)
return response
def _get_from_memory(self, request: GetRequest):
"""
Tries to read from the memory of the node if the key is in the range of the current node.
If not, the request the rerouted to the appropriate node.
Returns a GetResponse
"""
self.logger.debug(f"1 {self.identity(request)}| In [_get_from_memory]")
key = request.key
self.logger.debug(f"2 {self.identity(request)}| In [_get_from_memory]")
# find token for key
req_token = key // self.params.Q
self.logger.debug(f"3 {self.identity(request)}| In [_get_from_memory]")
# find node for token
node = self.token2node[req_token]
self.logger.debug(f"4 {self.identity(request)}| In [_get_from_memory]")
pref_list_for_token, node_list = self.get_top_N_healthy_pref_list(req_token)
self.logger.debug(f"5 {self.identity(request)}| In [_get_from_memory]")
# if curr node is not the coordinator
if self.n_id not in node_list:
# this request needs to be rerouted to first node in nodes
self.logger.debug(f"6 {self.identity(request)}| In [_get_from_memory]")
return self.reroute(node, "get")
self.logger.debug(f"7 {self.identity(request)}| In [_get_from_memory]")
# if curr node is coordinator node
response = self.read(request, req_token)
self.logger.debug(f"8 {self.identity(request)}| In [_get_from_memory]")
return response
def _get_from_hash_table(self, key: int, coord_nid:int = None, from_replica: bool=False):
"""
Used by the get/read requests and add it to the hash table
Returns succ code, and request if succis True else returns None
"""
if from_replica:
self.logger.debug(f"[GET] Here10: {key} | {self.n_id} | {self.view[self.n_id]}")
self.memory_of_replicas_lock.acquire()
if coord_nid not in self.memory_of_replicas:
self.memory_of_replicas_lock.release()
self.logger.debug(f"[GET] Heregood: {key} | {self.n_id} | {self.view[self.n_id]}")
return ReadResponse(server_id=self.n_id, succ=False, metadata=f"No replica memory for node {coord_nid} in {self.n_id}")
memory = self.memory_of_replicas[coord_nid].mem
if key not in memory:
self.memory_of_replicas_lock.release()
self.logger.debug(f"[GET] Heregood: {key} | {self.n_id} | {self.view[self.n_id]}")
return ReadResponse(server_id=self.n_id, succ=False, metadata=f"No key {key} in replica memory for node {coord_nid} in {self.n_id}")
put_request = memory[key]
self.memory_of_replicas_lock.release()
self.logger.debug(f"[GET] Here14: {key} | {self.n_id} | {self.view[self.n_id]}")
else:
self.logger.debug(f"[GET] Here11: {key} | {self.n_id} | {self.view[self.n_id]}")
self.memory_of_node_lock.acquire()
memory = self.memory_of_node
if key not in memory:
self.memory_of_node_lock.release()
self.logger.debug(f"[GET] Heregood: {key} | {self.n_id} | {self.view[self.n_id]}")
return ReadResponse(server_id=self.n_id, succ=False, metadata=f"No key {key} in main memory for node {self.n_id}")
put_request = memory[key]
self.memory_of_node_lock.release()
self.logger.debug(f"[GET] Here15: {key} | {self.n_id} | {self.view[self.n_id]}")
return ReadResponse(server_id=self.n_id,
item=ReadItem(val=put_request.val, context=put_request.context),
metadata="success", succ=True)
def _add_to_hash_table(self, request, add_to_replica=False, coord_id=None):
"""
Adds request to in memory hash table.
"""
if not add_to_replica:
self.logger.debug(f"[_add_to_hash_table] Adding to node memory: {request.key} | {self.n_id} | {self.view[self.n_id]}")
self.memory_of_node_lock.acquire()
self.memory_of_node[request.key] = request
self.memory_of_node_lock.release()
else:
self.logger.debug(f"[_add_to_hash_table] Adding to replica memory: {request.key} | {self.n_id} | {self.view[self.n_id]}")
self.memory_of_replicas_lock.acquire()
if coord_id not in self.memory_of_replicas:
self.memory_of_replicas[coord_id] = Memory(mem={
request.key: request
})
else:
mem_dict = dict(self.memory_of_replicas[coord_id].mem)
mem_dict[request.key] = request
self.memory_of_replicas[coord_id] = Memory(mem=mem_dict)
self.memory_of_replicas_lock.release()
def _add_to_memory(self, request, request_type: str):
"""
Adds to the memory of the node if the key is in the range of the current node.
If not the request is rerouted to the appropriate node.
1. get coordinator node
2. search for closest node
3. walk up clockwise to find latest node
Returns a GetResponse or a PutResponse
"""
key = request.key # assuming this key is in the key space
# find token for key
req_token = key // self.params.Q
# find node for token
node = self.token2node[req_token]
pref_list_for_token, node_list = self.get_top_N_healthy_pref_list(req_token)
# if curr node is not the coordinator
if self.n_id not in node_list:
# this request needs to be rerouted to first node in nodes
# get random healthy node in perference list that is not bad
return self.reroute(node, request_type)
# if curr node is coordinator node...
# update context
self._update_clock(request.context.clock)
# store it, in replica memory or main memory
if node == self.n_id:
self._add_to_hash_table(request)
else:
self._add_to_hash_table(request, add_to_replica=True, coord_id=node)
# send request to all replica nodes
self.logger.info(f"Replicating.... key={request.key}, val={request.val}")
response = self.replicate(request, req_token)
self.logger.info(f"Replication done !")
# return back to client with
return response
def _filter_latest(self, items: List[ReadItem]):
"""
Filters the list of ReadItems to return the latest item(s)
"""
def clock_lt(c1, c2):
for it2 in c2:
for it1 in c1:
if it2.server_id == it1.server_id and it1.count >= it2.count:
return False
return True
def clock_gt(c1, c2):
for it2 in c2:
for it1 in c1:
if it2.server_id == it1.server_id and it1.count <= it2.count:
return False
return True
max_clock = items[0].context.clock
filtered_items = [items[0]]
for item in items[1:]:
if clock_gt(item.context.clock, max_clock):
filtered_items = [item]
max_clock = item.context.clock
elif clock_lt(item.context.clock, max_clock):
pass
else:
filtered_items.append(item)
# count = len(items)
# for item in items:
# if item.val != filtered_items[0].val:
# count -= 1
# print(f"[Filter] Proportion of R with consistent: {count/len(items)}")
return filtered_items
def _update_clock(self, clock):
"""
Updates the vector clock during put request.
This method should only be called by the coordinator node.
"""
# See if current server already exists in clock
for clock_item in clock:
if clock_item.server_id == str(self.n_id):
clock_item.count += 1
return
# If not found
clock.append(VectorClockItem(server_id=str(self.n_id), count=1))
def reroute(self, node: int, request_type: str) -> Union[PutResponse, GetResponse]:
"""
Reroutes the request, gives a rejection signal to the client,
informs the client on which node to hit.
node -> node id
request_type = (get/put)
"""
assert(request_type == "get" or request_type == "put")
self.logger.info(f'Rerouting to {self.view[node]}...')
if request_type == "put":
return PutResponse(server_id=self.n_id, metadata="needs to reroute !", reroute=True, reroute_server_id=self.view[node])
elif request_type == "get":
return GetResponse(server_id=self.n_id, items=None, metadata="needs to reroute!", reroute=True, reroute_server_id=self.view[node])
else:
self.logger.error("Rerouting error, wrong params should be get/put")
raise NotImplementedError
def read(self, request, token):
"""
Read logic for dynamo. Assumes current node is the coordinator node.
The request to replicate will be made asynchronously and after R replicas have
returned successfully, then we can return to client with success.
Else this function will block until replication is done.
TODO: add async operation
"""
self.logger.debug(f"{self.identity(request)}| In [read]")
# Stores result from all reads to check divergences
items = []
# vaiables to deal with failures
replica_lock = threading.Lock()
completed_reps = 1
fut2replica = {}
executor = concurrent.futures.ThreadPoolExecutor(max_workers=8)
fs = set([])
# Read data on current node
req_token = request.key // self.params.Q
main_node = self.token2node[req_token]
try:
if main_node != self.n_id:
req = self._get_from_hash_table(request.key, coord_nid=main_node, from_replica=True)
else:
req = self._get_from_hash_table(request.key)
self.logger.debug(f"{self.identity(request)}| Inside try_catch {req} | {req.item}")
item = req.item
items.append(item)
except:
self.logger.error(f"[{self.identity(request)}] [Exception in read] for Key={request.key} at Nid/Port: {self.n_id}/{self.view[self.n_id]} | Owner of this key is {main_node} | Exception is {sys.exc_info()[0]} ")
response = GetResponse(server_id=self.n_id, metadata="key error ?", succ=False)
# TODO: can do read repair here
completed_reps = 0
items_lock = threading.Lock()
# Callback to handle success/failure of read_rpc requests
def get_callback(executor, fut2replica, tokens_used):
nonlocal completed_reps
nonlocal items
def read_rpc_callback(f):
nonlocal executor
nonlocal fut2replica
nonlocal tokens_used
nonlocal completed_reps
if self.read_failure(f):
# get all information pertinent to future
s = time.time()
future_information = fut2replica[f]
# hinted handoff in get/read
req = future_information.req
req.hinted_handoff = future_information.hinted_handoff if future_information.hinted_handoff != -1 else future_information.original_node
# update failed nodes, fo gossip to overturn in the future
failed_node_to_add = future_information.original_node
if self.params.update_failure_on_rpcs:
self.update_failed_nodes(failed_node_to_add)
# get new candidate node from spare list
new_n, new_token = self.get_spare_node(tokens_used)
if new_n == None:
self.logger.debug(f"[read] [{self.identity(request)}] We have gone across the entire ring and discovered no node that can service this request. Giving up....")
return
# update used tokens memory
tokens_used.append(new_token)
self.logger.debug(f"[{self.identity(request)}] New node selected for READ hinted handoff is {new_n}, firing request")
fut = executor.submit(read_rpc, self.view, new_n, req)
# add callback
fut.add_done_callback(read_rpc_callback)
fut2replica[fut] = FutureInformation(req=req, hinted_handoff=new_n, original_node=future_information.original_node)
e = time.time()
else:
replica_lock.acquire()
completed_reps += 1
replica_lock.release()
items_lock.acquire()
item = f.result().item
items.append(item)
items_lock.release()
self.logger.info(f"[{self.identity(request)}] [READ callback] Successful {completed_reps} / {self.params.N}")
if completed_reps == self.params.N:
# this means our request is successfully replicated, we can RIP !
self.logger.info(f"[{self.identity(request)}] Get request has been successfully replicated :) ")
return read_rpc_callback
pref_list, pref_node_list = self.get_top_N_healthy_pref_list(token)
callback = get_callback(executor, fut2replica, pref_list)
self.logger.debug(f"[{self.identity(request)}] [Coordinate READ] Pref list at {self.view[self.n_id]} is {pref_list}")
for p in pref_node_list:
# nessesary for storing in replica memory stores
request.coord_nid = main_node
if p != self.n_id:
# assuming no failures
fut = executor.submit(read_rpc, self.view, p, request)
# add description of future in a hash table
fut_info = FutureInformation(req=request, original_node=p, hinted_handoff=-1)
fut2replica[fut] = fut_info
# add callback
fut.add_done_callback(callback)
fs.add(fut)
# wait until max timeout, and check if W writes have succeeded, if yes then return else fail request
itrs = concurrent.futures.as_completed(fs, timeout=self.params.r_timeout)
failure = False
if self.params.R > 1:
try:
r = 1 # already read from original node
for it in itrs:
if not self.read_failure(it):
r += 1
self.logger.info(f"[{self.identity(request)}] ITRS: Reads from {r} out of {self.params.R} nodes done !")
if r >= self.params.R:
self.logger.debug(f"[{self.identity(request)}] [Read coordinator] Breaking out of loop as {r} / {self.params.R} reads finishes")
break
# TODO: store the futures that have not finished
except concurrent.futures.TimeoutError:
# time has expired
failure = True
self.logger.error(f" [{self.identity(request)}] [Read coordinator] Time has expired !")
return GetResponse(server_id=self.n_id, items=items, metadata="timeout", reroute=False, reroute_server_id=-1)
num_wait_times = 0
while completed_reps < self.params.R and not failure:
if num_wait_times % 100 == 0:
self.logger.debug(f"[{self.identity(request)}] We are waiting for read request to pass.... {completed_reps} {self.params.R}")
time.sleep(0.001)
num_wait_times += 1
if num_wait_times > 1000:
failure = True
break
if failure:
# TODO: implement succ or failure of put response
return GetResponse(server_id=self.n_id, succ=False)
items_lock.acquire()
filtered_items = self._filter_latest(items)
items_lock.release()
response = GetResponse(server_id=self.n_id, items=filtered_items, metadata="success", reroute=False, reroute_server_id=-1, succ=True)
return response
def update_failed_nodes(self, node: int, remove: bool = False):
"""
Update unhealthyness of a node, (will be reversed by gossip protocol)
"""
self.logger.debug(f"[update_failed_nodes] {self.n_id} / {self.view[self.n_id]} Updating status of node {node} | remove from failing nodes = {remove} ")
self.failed_node_lock.acquire()
if remove:
if node in self.failed_nodes:
self.failed_nodes.remove(node)
else:
self.failed_nodes.add(node)
self.failed_node_lock.release()
def get_spare_node(self, tokens_used: List[int]):
"""
Move up the list and get a node that has not been used by the current request.
This node will be used in the hinted handoff
Returns [None,None] if there is not new node to be founds to service this request, can't do anything
"""
# check big list for next node not current being used.
# need to be careful about what kind of nodes have already been used.
nodes_used = [self.token2node[t] for t in tokens_used]
last_token_used = tokens_used[-1]
key_space = pow(2, self.params.hash_size)
total_v_nodes = round(key_space / self.params.Q)
new_token = (last_token_used + 1) % total_v_nodes
self.logger.debug(f"[get_spare_node] at {self.n_id}/{self.view[self.n_id]}. Tokens used : {tokens_used} | Failed nodes: {self.failed_nodes}")
# move up clockwise
token_used = None
while new_token != last_token_used:
new_node = self.token2node[new_token]
self.logger.debug(f"[get_spare_node] at {self.n_id}/{self.view[self.n_id]}. New token candidate {new_token} | New node {new_node} | tokens used {tokens_used} | nodes used {nodes_used}")
self.failed_node_lock.acquire()
if new_node not in nodes_used and new_node not in self.failed_nodes:
self.logger.debug(f"[get_spare_node] at {self.n_id}/ {self.view[self.n_id]}. Success ! Token selected {new_token} | Node selected {new_node} | tokens used {tokens_used} | nodes used {nodes_used}")
self.failed_node_lock.release()
token_used = new_token
return new_node, token_used
self.failed_node_lock.release()
new_token = (new_token + 1) % total_v_nodes
self.logger.error(f"[get_spare_node] at {self.n_id}/{self.view[self.n_id]}. No spare tokens found, no new nodes to deliver request")
# TODO: handle gracefully
return None, None
def get_top_N_healthy_pref_list(self, token):
"""
If node is unhealthy in ring, then go ahead in ring until we get to healthy node
"""
self.failed_node_lock.acquire()
pref_list, node_list = get_preference_list_for_token(token=token, token2node=self.token2node, params=self.params, unhealthy_nodes=self.failed_nodes)
self.failed_node_lock.release()
return pref_list, node_list
def read_failure(self, fut):
ret = fut.exception() is None
if not fut.exception():
res = fut.result()
if res.succ:
return False
return True
def identity(self, request):
return f"Node/Port={self.n_id}/{self.view[self.n_id]} | Key: {request.key}"
def replicate(self, request, token):
"""
Replication logic for dynamo DB. Assumes current node is the coordinator node.
The request to replicate will be made asynchronously and after R replicas have
returned successfully, then we can return to client with success.
Else this function will block until replication is done.
"""
replica_lock = threading.Lock()
completed_reps = 1
fut2replica = {}
executor = concurrent.futures.ThreadPoolExecutor(max_workers=8)
fs = set([])
def get_callback(executor, fut2replica, tokens_used):
# logger.info(f"Completed_reps !! {completed_reps}")
nonlocal completed_reps
def write_rpc_callback(f):
"""
If future succeeds great !
If future does not succeed, we have to
1. find a spare node, send the request there with hinted handoff.
2. mark node as unhealthy, gossip will mark it as healthy later on.
3. once all N request have been replicated, we can rest in peace.
4. store a global variable in higher order function, inc it until N
"""
nonlocal executor
nonlocal fut2replica
nonlocal completed_reps
nonlocal tokens_used
if f.exception():
# get all information pertinent to future
future_information = fut2replica[f]
# add hinted handoff information
req = future_information.req
req.hinted_handoff = future_information.original_node
self.logger.debug(f"[{self.identity(request)}] Hinted handoff request is {req}")
failed_node_to_add = future_information.hinted_handoff if future_information.hinted_handoff != -1 else future_information.original_node
self.logger.debug(f"[{self.identity(request)}] Failed node is {failed_node_to_add}")
if self.params.update_failure_on_rpcs:
self.update_failed_nodes(failed_node_to_add)
# get new candidate node from spare list
new_n, new_token = self.get_spare_node(tokens_used)
if new_n == None:
self.logger.debug(f"[replicate] [{self.identity(request)}] We have gone across the entire ring and discovered no node that can service this request. Giving up....")
return
# update used tokens memory TODO: should add a lock
tokens_used.append(new_token)
self.logger.debug(f"[{self.identity(request)}] New node selected for hinted handoff is {new_n}")
# make the call, add the current function so that it's called again
fut = executor.submit(replicate_rpc, self.view, new_n, req)
# add callback
fut.add_done_callback(write_rpc_callback)
# add update information about new future in case this fails too: TODO: should add a lock
fut2replica[fut] = FutureInformation(req=req, hinted_handoff=new_n, original_node=future_information.original_node)
else:
self.logger.info(f"[{self.identity(request)}] Writes done !")
replica_lock.acquire()
completed_reps += 1
replica_lock.release()
if completed_reps == self.params.N:
# this means our request is successfully replicated, we can RIP !
self.logger.info(f"[{self.identity(request)}] Put request has been successfully replicated :) ")
return write_rpc_callback
# get top N healthy nodes
pref_list, pref_node_list = self.get_top_N_healthy_pref_list(token)
callback = get_callback(executor, fut2replica, pref_list)
self.logger.debug(f"[{self.identity(request)}] Tokens in pref_list are {pref_list}, and Nodes in pref_list are {pref_node_list}")
for p in pref_node_list:
# nessesary for storing in replica memory stores
request.coord_nid = self.token2node[token]
if p != self.n_id:
# assuming no failures
fut = executor.submit(replicate_rpc, self.view, p, request)
# add description of future in a hash table
fut_info = FutureInformation(req=request, original_node=p, hinted_handoff=-1)
fut2replica[fut] = fut_info
# add callback
fut.add_done_callback(callback)
fs.add(fut)
# wait until max timeout, and check if W writes have succeeded, if yes then return else fail request
itrs = concurrent.futures.as_completed(fs, timeout=self.params.w_timeout)
failure = False
if self.params.W > 1:
try:
w = 1 # already written on original node
for it in itrs:
if it.exception() is not None:
# this future did not work out, find alterate future node and put data there
self.logger.info(f"[{self.identity(request)}] Failure non callback !!")
else:
w += 1
self.logger.info(f"[{self.identity(request)}] ITRS: Writes to {w} nodes done !")
self.logger.info(f"[{self.identity(request)}] Replicated at {fut2replica[it].original_node}")
self.logger.info(f"[{self.identity(request)}] -----w is {w} and W is {self.params.W}-----")
if w >= self.params.W:
self.logger.info(f"[{self.identity(request)}] Breaking out of loop after satisfying min replicated nodes")
failure = False
break
except concurrent.futures.TimeoutError:
# time has expired
failure = True
self.logger.error(f"[{self.identity(request)}] Time has expired !")
# fail if timeout or completed reps have not been done
self.logger.info(f"[{self.identity(request)}] ----Completetd reps finally {completed_reps} Failure > {failure}, should we wait some more ?")
num_wait_times = 0
while completed_reps < self.params.W and not failure:
if num_wait_times % 100 == 0:
self.logger.info(f"[{self.identity(request)}] --------We are waiting....")
time.sleep(0.001)
num_wait_times += 1
if num_wait_times > 1000:
failure = True
break
if failure:
return PutResponse(succ=False)
# if we are here, we managed to replicate W nodes and the rest will be taken care of !
return PutResponse(server_id=self.n_id, metadata="Replicated", reroute=False, reroute_server_id=-1, succ=True, context=request.context)
# Debugging Functions
def PrintMemory(self, request, context):
"""
Prints current state of the node
function meant for debugging purposes
"""
self.logger.info("-------------------------------------------")
self.logger.info(f"Information for tokens of node {self.n_id}")
for token in self.membership_information[self.n_id]:
self.logger.info(f"For token {token}, preference List: {get_preference_list_for_token(token, self.token2node, self.params)}")
self.logger.info("The memory store for current node:")
for key, val in self.memory_of_node.items():
self.logger.info(f"Key: {key} | Val: {val.val}")
self.logger.info("The memory store for replicated items:")
for n_id, d in self.memory_of_replicas.items():
self.logger.info(f"Replication for node {n_id}")
for key, val in d.mem.items():
self.logger.info(f"Key: {key} | Original Owner {find_owner(key, self.params, self.token2node)}| Val: {val.val} | Hinted Handoff {val.hinted_handoff}")
self.logger.info("The membership information is:")
for key, val in self.membership_information.items():
ranges = get_ranges(val, self.params.Q)
self.logger.info(f" Node {key} has the following tokens {ranges}")
self.logger.info("-------------------------------------------")
response = MemResponse(mem=self.memory_of_node, mem_replicated=self.memory_of_replicas)
return response
def Fail(self, request: FailRequest, context):
"""
Fail this node, do not respond to future requests.
"""
self.fail = request.fail
self.logger.info(f"Node {self.n_id} is set to fail={self.fail}")
return request
def Gossip(self, request, context):
"""
Turn gossip on for this node
"""
self.start_gossip_protocol()
return request
def _check_add_latency(self):
if self.network_params is None:
return
if self.network_params.randomize_latency:
if self.network_params.distribution == 'uniform':
latency = random.randint(0, 2*self.network_params.latency) / 1000
else:
latency = random.gauss(self.network_params.latency, self.network_params.latency) / 1000
latency = max(0, latency)
time.sleep(latency)
else:
time.sleep(self.network_params.latency / 1000)