Skip to content

Latest commit

 

History

History
148 lines (130 loc) · 3.95 KB

README.md

File metadata and controls

148 lines (130 loc) · 3.95 KB

JSON Schema for Scala

This library describes JSON Schema documents in Scala and provides support for turning Scala data-types into JSON Schema documents automatically using Magnolia. This library does not attempt to implement all the features of JSON Schema (and currently only targets draft 7).

Usage

You can build JSON Schema documents yourself from scratch, or you can use the JSON Schema Encoder typeclass which will automatically build a JSON Schema document from most Scala data-types. For example:

import io.kaizensolutions.jsonschema._

@title("A representation of a Person")
final case class Person(
  @description("age of the person in years") age: Option[Int],
  @description("full name of the person") name: String,
  device: Device
)

sealed trait Device
object Device {
  private final case class Simple(id: Int, reading: Reading)       extends Device
  private final case class Cluster(groupId: Int, reading: Reading) extends Device

  def cluster(groupId: Int, reading: Reading): Device = Cluster(groupId, reading)
  def simple(id: Int, reading: Reading): Device = Simple(id, reading)
}

final case class Reading(
  @description("poll frequency") pollFreq: Long,
  last: Option[Int]
)

You can automatically derive a JSON Schema document for a Person like so:

val jssDoc: JsonSchemaDocument = 
  JsonSchemaEncoder[Person].encode

JsonSchemaDocument is a Scala data-type that you can further manipulate if you like. You can also turn it into JSON using one of the renderers (like circe):

import io.kaizensolutions.jsonschema.renderers.circe._

jssDoc.toJson.spaces2

This will generate the following JSON Schema document:

Click here to see the document rendered in JSON

{
  "$schema" : "http://json-schema.org/draft-07/schema#",
  "$id" : "io.kaizensolutions.jsonschema.Person",
  "type" : "object",
  "properties" : {
    "age" : {
      "type" : "integer",
      "description" : "age of the person in years"
    },
    "name" : {
      "type" : "string",
      "description" : "full name of the person"
    },
    "device" : {
      "$ref" : "io.kaizensolutions.jsonschema.Device"
    }
  },
  "required" : [
    "name",
    "device"
  ],
  "additionalProperties" : true,
  "definitions" : {
    "io.kaizensolutions.jsonschema.Reading" : {
      "$id" : "io.kaizensolutions.jsonschema.Reading",
      "type" : "object",
      "properties" : {
        "pollFreq" : {
          "type" : "number",
          "description" : "poll frequency"
        },
        "last" : {
          "type" : "integer"
        }
      },
      "required" : [
        "pollFreq"
      ],
      "additionalProperties" : true
    },
    "io.kaizensolutions.jsonschema.Device" : {
      "$id" : "io.kaizensolutions.jsonschema.Device",
      "oneOf" : [
        {
          "type" : "object",
          "properties" : {
            "groupId" : {
              "type" : "integer"
            },
            "reading" : {
              "$ref" : "io.kaizensolutions.jsonschema.Reading"
            }
          },
          "required" : [
            "groupId",
            "reading"
          ],
          "additionalProperties" : true
        },
        {
          "type" : "object",
          "properties" : {
            "id" : {
              "type" : "integer"
            },
            "reading" : {
              "$ref" : "io.kaizensolutions.jsonschema.Reading"
            }
          },
          "required" : [
            "id",
            "reading"
          ],
          "additionalProperties" : true
        }
      ]
    }
  },
  "title" : "A representation of a Person"
}

Inspiration

This library is heavily inspired by Andriy Onyshchuk's amazing JSON Schema library which is based on macros. This library takes a slightly different approach and uses Magnolia instead to do typeclass derivation in the hopes of making the Scala 3 migration process a lot easier.