-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathinference.py
30 lines (25 loc) · 1.17 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
import os
from model import *
from dataprocess.utils import file_name_path
import SimpleITK as sitk
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
use_cuda = torch.cuda.is_available()
def inferencemutilunet3dtest():
newSize = (112, 112, 128)
Unet3d = MutilUNet3dModel(image_depth=128, image_height=112, image_width=112, image_channel=1, numclass=1,
batch_size=1, loss_name='MutilFocalLoss', inference=True,
model_path=r'log\MutilUNet3d\focalloss\BinaryVNet2dSegModel.pth')
datapath = r"F:\MedicalData\(ok)2022KiPA\dataset\test\image"
makspath = r"F:\MedicalData\(ok)2022KiPA\dataset\test\label"
image_path_list = file_name_path(datapath, False, True)
for i in range(len(image_path_list)):
imagepathname = datapath + "/" + image_path_list[i]
sitk_image = sitk.ReadImage(imagepathname)
sitk_mask = Unet3d.inference(sitk_image, newSize)
maskpathname = makspath + "/" + image_path_list[i]
sitk.WriteImage(sitk_mask, maskpathname)
if __name__ == '__main__':
inferencemutilunet3dtest()