-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgatt.py
328 lines (287 loc) · 9.98 KB
/
gatt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Tools for analyzing attention weights
import torch
from torch_geometric.utils import remove_self_loops, add_self_loops, get_num_hops
from torch_geometric.data import Data
from typing import List, Tuple, Dict
import networkx as nx
from torch_geometric.utils import (
remove_self_loops,
add_self_loops,
get_num_hops,
k_hop_subgraph,
)
def return_edges_in_k_hop(
data: Data,
target_idx: int,
hop: int,
self_loops: bool = False,
return_as_tensor: bool = False,
) -> List[Tuple[int, int]]:
r"""Returns all edges in :obj:`data` that are connected to :obj:`target_idx`
and lie within a :obj:`hop` distance.
Args:
data (Data): The graph data object.
target_idx (int): The central node.
hop (int): The number of hops.
add_self_loops (bool, optional): If set to :obj:`True`, will add self-loops
in the returned edge indices. (default: :obj:`False`)
"""
assert hop > 0
if self_loops:
edge_index = add_self_loops(remove_self_loops(data.edge_index)[0])[0]
else:
edge_index = remove_self_loops(data.edge_index)[0]
_, _, _, inv = k_hop_subgraph(
node_idx=target_idx,
num_hops=hop,
edge_index=edge_index,
relabel_nodes=True,
)
if return_as_tensor:
return edge_index[:, inv]
else:
return edge_index[:, inv].t().tolist()
@torch.no_grad()
def generate_att_dict(model, data, sparse: bool = True) -> Dict:
"""
Generates a dictionary of attention matrices from a model.
Attention heads are averaged across all heads.
Args:
model: The GAT model.
data: The data object.
sparse: Whether to return the attention matrices in sparse format.
Returns:
A dictionary of attention matrices
"""
_ = model(data.x, data.edge_index, return_att=True)
num_nodes = data.num_nodes
att = model.att
att_matrix_dict = {}
device = att[0][0].device
for idx, att_info in enumerate(att):
if sparse:
att_matrix_dict[idx] = torch.sparse_coo_tensor(
att_info[0],
att_info[1].mean(dim=1).squeeze(),
size=(num_nodes, num_nodes),
device=device,
).t()
else:
att_matrix_dict[idx] = torch.zeros((num_nodes, num_nodes)).to(device)
att_matrix_dict[idx][att_info[0][1], att_info[0][0]] = (
att_info[1].mean(dim=1).squeeze()
)
return att_matrix_dict
def prep_for_gatt(model, data, num_hops: int, sparse: bool = True) -> Tuple[Dict, Dict]:
"""
Calculates attention matrices that will be used for actual computatoin of GAtt.
Main function is to calculate the correction matrix (C matrix in the original paper).
Args:
model: The GAT model.
data: The data object.
num_hops: The number of layers of the GAT model.
Returns:
A tuple of attention matrix dictionary and correction matrix dictionary.
"""
att_matrix_dict = generate_att_dict(model=model, data=data, sparse=sparse)
correction_matrix_dict = {}
if sparse:
correction_matrix_dict[0] = (
torch.eye(data.num_nodes).to_sparse().to(data.x.device)
)
for idx in range(1, num_hops):
correction_matrix_dict[idx] = torch.sparse.mm(
correction_matrix_dict[idx - 1], att_matrix_dict[num_hops - idx]
)
else:
correction_matrix_dict[0] = torch.eye(data.num_nodes).to(data.x.device)
for idx in range(1, num_hops):
correction_matrix_dict[idx] = (
correction_matrix_dict[idx - 1] @ att_matrix_dict[num_hops - idx]
)
return att_matrix_dict, correction_matrix_dict
def avgatt(
target_edge: Tuple[int, int],
att_matrix_dict: Dict,
num_hops: int,
) -> float:
"""
Calculates AvgAtt for a given target edge.
This is the average of attention values across all layers.
Args:
target_edge: The target edge.
att_matrix_dict: The dictionary of attention matrices.
num_hops: The number of layers of the GAT model.
Returns:
The AvgAtt value.
"""
src_idx = target_edge[0]
tgt_idx = target_edge[1]
result = 0
for m in range(num_hops):
result += att_matrix_dict[m][tgt_idx, src_idx]
return result.item() / num_hops
def gatt(
target_edge: Tuple[int, int],
ref_node: int,
att_matrix_dict: Dict,
correction_matrix_dict: Dict,
num_hops=int,
) -> float:
"""
Calculates GAtt for a given target edge in the context of calculating the reference node.
In the paper, GAtt is expressed as \phi_{i, j}^v. Target edge is (i, j) and reference node is v.
Args:
target_edge: The target edge.
ref_node: The reference node.
att_matrix_dict: The dictionary of attention matrices.
correction_matrix_dict: The dictionary of correction matrices.
Returns:
The GAtt value.
"""
src_idx = target_edge[0]
tgt_idx = target_edge[1]
assert num_hops > 1, "1 layer models are out of the question."
result = 0
for m in range(num_hops - 1):
result += (
correction_matrix_dict[num_hops - m - 1][ref_node, tgt_idx].item()
* att_matrix_dict[m][tgt_idx, src_idx]
)
if tgt_idx == ref_node:
result += att_matrix_dict[num_hops - 1][tgt_idx, src_idx]
return result.item()
def get_gatt(
target_node,
model,
data,
sparse: bool = True,
) -> Tuple[List[float], List[Tuple[int, int]]]:
num_hops = get_num_hops(model=model)
att_matrix_dict, correction_matrix_dict = prep_for_gatt(
model=model, data=data, num_hops=num_hops, sparse=sparse
)
edges_in_k_hop = return_edges_in_k_hop(
data=data, target_idx=target_node, hop=num_hops, self_loops=True
)
gatt_list = []
for current_edge in edges_in_k_hop:
gatt_list.append(
gatt(
target_edge=current_edge,
ref_node=target_node,
att_matrix_dict=att_matrix_dict,
correction_matrix_dict=correction_matrix_dict,
num_hops=num_hops,
)
)
return gatt_list, edges_in_k_hop
def get_avgatt(
target_node,
model,
data,
sparse: bool = True,
) -> Tuple[List[float], List[Tuple[int, int]]]:
num_hops = get_num_hops(model=model)
att_matrix_dict, _ = prep_for_gatt(
model=model, data=data, num_hops=num_hops, sparse=sparse
) # correction_matrix_dict is not needed for avgatt
edges_in_k_hop = return_edges_in_k_hop(
data=data, target_idx=target_node, hop=num_hops, self_loops=True
)
avgatt_list = []
for current_edge in edges_in_k_hop:
avgatt_list.append(
avgatt(
target_edge=current_edge,
att_matrix_dict=att_matrix_dict,
num_hops=num_hops,
)
)
return avgatt_list, edges_in_k_hop
def gatt_batch(
ref_node: int,
num_of_hops: int,
att_matrix_dict: Dict,
correction_matrix_dict: Dict,
sparse: bool = False,
) -> torch.Tensor:
num_nodes = att_matrix_dict[0].shape[0]
# Set the select matrix
if sparse:
indices = torch.tensor(
[
[ref_node] * att_matrix_dict[0].shape[1],
list(range(att_matrix_dict[0].shape[1])),
]
)
values = torch.ones(att_matrix_dict[0].shape[1])
select_matrix = torch.sparse_coo_tensor(
indices, values, att_matrix_dict[0].shape, device=att_matrix_dict[0].device
)
else:
select_matrix = torch.zeros_like(att_matrix_dict[0])
select_matrix[ref_node, :] = 1
# Loop over the number of hops
for i in reversed(range(num_of_hops)):
# If it's the hightest hop, use the select matrix
if i == num_of_hops - 1:
if sparse:
result_matrix = select_matrix * att_matrix_dict[i]
else:
result_matrix = select_matrix * att_matrix_dict[i]
# If it's not the highest hop, use the correction matrix if it's provided
else:
if sparse:
# Cannot use index operation for sparse tensors
row_selector = torch.sparse_coo_tensor(
torch.tensor([[0], [ref_node]]),
torch.tensor([1.0]),
(1, num_nodes),
device=att_matrix_dict[0].device,
)
selected = torch.sparse.mm(
row_selector, correction_matrix_dict[num_of_hops - i - 1]
)
# Identical operation as .expand_as but in sparse format
expanded = torch.vstack([selected] * att_matrix_dict[i].shape[1]).t()
result_matrix += expanded * att_matrix_dict[i]
else:
result_matrix += (
correction_matrix_dict[num_of_hops - i - 1][ref_node, :]
.expand_as(att_matrix_dict[i])
.t()
* att_matrix_dict[i]
)
return result_matrix
def get_gatt_batch(
target_node,
model,
data,
sparse: bool = True,
) -> Tuple[List[float], List[Tuple[int, int]]]:
num_hops = get_num_hops(model=model)
att_matrix_dict, correction_matrix_dict = prep_for_gatt(
model=model, data=data, num_hops=num_hops, sparse=sparse
)
edges_in_k_hop = return_edges_in_k_hop(
data=data,
target_idx=target_node,
hop=num_hops,
self_loops=True,
return_as_tensor=True,
)
gatt_matrix = gatt_batch(
ref_node=target_node,
num_of_hops=num_hops,
att_matrix_dict=att_matrix_dict,
correction_matrix_dict=correction_matrix_dict,
sparse=sparse,
)
if sparse:
gatt_list = [
gatt_matrix[edge[1], edge[0]].item() for edge in edges_in_k_hop.t()
]
else:
gatt_list = gatt_matrix[edges_in_k_hop[1], edges_in_k_hop[0]].tolist()
return gatt_list, edges_in_k_hop