-
Notifications
You must be signed in to change notification settings - Fork 14
/
discover_semantics.py
98 lines (79 loc) · 3.42 KB
/
discover_semantics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import argparse
import math
import numpy as np
import os
import torch
import curriculums
from torch_ema import ExponentialMovingAverage
from PIL import Image
from util import sample_latent
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--experiment', type=str, default='CelebA_surf')
parser.add_argument('--lock_view_dependence', action='store_true')
parser.add_argument('--image_size', type=int, default=256)
parser.add_argument('--ray_step_multiplier', type=int, default=2)
parser.add_argument('--curriculum', type=str, default='CelebA_single')
parser.add_argument('--specific_ckpt', type=str, default=None)
parser.add_argument('--num_id', type=int, default=11)
parser.add_argument('--intermediate_points', type=int, default=15)
parser.add_argument('--traverse_range', type=float, default=2.0)
parser.add_argument('--psi', type=float, default=0.7)
opt = parser.parse_args()
## initialize camera parameter
yaw = math.pi / 2
pitch = math.pi / 2
fov = 12
curriculum = getattr(curriculums, opt.curriculum)
curriculum['num_steps'] = curriculum[0]['num_steps'] * opt.ray_step_multiplier
curriculum['img_size'] = opt.image_size
curriculum['lock_view_dependence'] = opt.lock_view_dependence
curriculum['h_mean'] = yaw
curriculum['v_mean'] = pitch
curriculum['fov'] = fov
curriculum['v_stddev'] = 0
curriculum['h_stddev'] = 0
curriculum['last_back'] = curriculum.get('eval_last_back', False)
curriculum['nerf_noise'] = 0
curriculum['feat_dim'] = 512
curriculum = {key: value for key, value in curriculum.items() if type(key) is str}
if opt.specific_ckpt is not None:
g_path = f'./{opt.experiment}/{opt.specific_ckpt}'
else:
g_path = f'./{opt.experiment}/generator.pth'
### Load
generator = torch.load(g_path, map_location=torch.device(device))
ema_file = g_path.split('generator')[0] + 'ema.pth'
ema_f = torch.load(ema_file)
ema = ExponentialMovingAverage(generator.parameters(), decay=0.999)
ema.load_state_dict(ema_f)
ema.copy_to(generator.parameters())
generator.set_device(device)
generator.eval()
save_dir = f'./result/{opt.experiment}/semantic'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
traverse_range = opt.traverse_range
intermediate_points = opt.intermediate_points
num_id = opt.num_id
zs = sample_latent((num_id, 9, 6), device, opt.psi)
z_noise = torch.zeros((num_id, 1, 256), device=device)
_, n_layers, n_dim = zs.shape
offsets = np.linspace(-traverse_range, traverse_range, intermediate_points)
for i_layer in range(n_layers):
for i_dim in range(n_dim):
print(f" layer {i_layer} - dim {i_dim}")
imgs = []
for offset in offsets:
_zs = zs.clone()
_zs[:, i_layer, i_dim] = offset
with torch.no_grad():
img = generator.staged_forward(_zs, z_noise, **curriculum)[0]
img = torch.cat([_img for _img in img], dim=1)
imgs.append(img)
imgs = torch.cat(imgs, dim=2)
imgs = (imgs.permute(1, 2, 0).numpy() * 127.5 + 127.5).astype(np.uint8)
Image.fromarray(imgs).save(
os.path.join(save_dir, f"traverse_L{i_layer}_D{i_dim}.png")
)