-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathHeston1993KahlJaeckelLordRev3.m
122 lines (102 loc) · 3.66 KB
/
Heston1993KahlJaeckelLordRev3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
function [prices, alphas] = Heston1993KahlJaeckelLordRev3(PC, S,K,T,t,r,q,v0,theta,rho,kappa,sigma, alphas)
% Heston pricing function based on the implementation suggested by
% Roger Lord and Chrisitan Kahl in "Optimal Fourier inversion in
% semi-analytical option pricing"
%
%
% Input: (PC till q can be vectorized)
% PC: 1 for Calls, 2 for Puts
% S: Spot
% K: Strike
% T: Maturity
% t: start date
% r: interest rate
% q: dividend
% v0: initial variance
% theta: long run mean variance
% kappa: mean reversion speed of volatility
% sigma: volatility of volatility
% rho: correlation between returns volatility
% alpha: alpha can be a vector supplied by the user, otherwise the
% function attempts to find a payoff-dependent optimal alpha
%
% Output: Price for each option, optionally generated alphas
%
% Usage: Heston1993KahlJaeckelLordRev3(1, 100, 100, 20,0, 0.05, 0.0,
% 0.00003, 0.00003,-0.3, 0.5, 0.0008)
%
% Author: Jonathan Frei, 2015
%
% force column vector
PC=PC(:);
S=S(:);
K=K(:);
T=T(:);
t=t(:);
r=r(:);
q=q(:);
nos = numel(S);
prices=NaN(nos,1);
tau=T-t;
mu=(r-q);
F = S.*exp(mu.*tau);
if(~exist('alphas','var'))
alphas = NaN(numel(S),1);
elseif(numel(alphas)==1)
alphas = repmat(alphas,numel(S),1);
end
alpha0=0.75;
for(ind=1:nos)
if(isnan(alphas(ind)))
try
% using fzero here instead of fminsearch
alphas(ind) = fzero( @(a) psi(a,K(ind), F(ind), kappa, theta, rho, sigma, tau(ind), v0), alpha0);
catch
alphas(ind) = alpha0;
end
end
prices(ind) = Ralpha(F(ind), K(ind), alphas(ind))+1/pi*integral(@(x) phi(x, K(ind), alphas(ind), F(ind), kappa, theta, rho, sigma, tau(ind), v0) , 0, Inf);
if (PC(ind)==2)
prices(ind) = prices(ind) + K(ind)*exp(-r(ind)*tau(ind))-S(ind)*exp(-q(ind)*tau(ind));
end
end
end
function p = psi(alpha, K, F, kappa, theta, rho, sigma, tau, v0)
k = log(K);
p = -alpha*k+0.5*log(phi(-(alpha+1)*1i, K, alpha, F, kappa, theta, rho, sigma, tau, v0)^2);
end
function r = Ralpha(F, K, alpha)
r = F*(alpha<=0)-K*(alpha<=-1)-0.5*(F*(alpha==0)-K*(alpha==-1));
end
function y = phi(v, K, alpha, F, kappa, theta, rho, sigma, tau, v0)
k = log(K);
y = real(exp(-1i*(v-1i*alpha)*k).*( cf(v-1i*(alpha+1), F, kappa, theta, rho, sigma, tau, v0)./(-(v-1i*(alpha+1)).*(v-1i*alpha))));
end
function c = cf(u, F, kappa, theta, rho, sigma, tau, v0)
f = log(F);
c = exp(1i*u*f+ A(u, kappa, theta, rho, sigma, tau)+Bv(u, rho, sigma, kappa, tau)*v0);
end
function b = Bv(u, rho, sigma, kappa, tau)
b = ((beta(u,rho,sigma,kappa)-D(u, rho, sigma, kappa)).*(1-exp(-D(u, rho, sigma, kappa)*tau)))./(sigma.^2*(1-G(u, rho, sigma, kappa).*exp(-D(u, rho, sigma, kappa)*tau)));
end
function a = A(u, kappa, theta, rho, sigma, tau)
a = (kappa*theta*((beta(u,rho,sigma,kappa)-D(u, rho, sigma, kappa))*tau-2*log(phi2(u, rho, sigma, kappa, tau))))/sigma.^2;
end
function p = phi2(u, rho, sigma, kappa, tau)
p = (G(u, rho, sigma, kappa).*exp(-D(u, rho, sigma, kappa)*tau)-1)./(G(u, rho, sigma, kappa)-1);
end
function g = G(u, rho, sigma, kappa)
g = (beta(u,rho,sigma,kappa)-D(u, rho, sigma, kappa))./(beta(u,rho,sigma,kappa)+D(u, rho, sigma, kappa));
end
function d = D(u, rho, sigma, kappa)
d = sqrt(beta(u,rho,sigma,kappa).^2-4*alphahat(u)*gamma(sigma));
end
function a = alphahat(u)
a = -0.5*u.*(1i+u);
end
function b = beta(u,rho,sigma,kappa)
b = kappa-rho*sigma*u*1i;
end
function y = gamma(sigma)
y = 0.5*sigma.^2;
end