-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_nomultithread.py
582 lines (492 loc) · 23.7 KB
/
main_nomultithread.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import sys
# import time
import csv
import flowio
# import os
import numpy as np
from scipy.stats import kendalltau
from sklearn.metrics import pairwise_distances,adjusted_mutual_info_score
from sklearn_extra.cluster import KMedoids
from sklearn.preprocessing import StandardScaler
import re
import matplotlib
import numpy as np;
import traceback
import leidenalg as la
import igraph as ig
# timer for evaluation
import time
from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout,
QLineEdit, QCheckBox, QPushButton, QProgressBar, QLabel, QFileDialog, QScrollArea, QFrame,
QAction, QMessageBox,QComboBox)
from PyQt5.QtCore import QThread, pyqtSignal, QTimer
EVAL = False
# SIM = False
#from sklearn.datasets import make_classification
BOOT = 1000
CLUSTERS = 10
# MEDS = CLUSTERS
BOOTSIZE = 200
matplotlib.use('Qt5Agg')
excludedcols = ['Saturated', 'Time', 'Sorted', 'Row', 'Column']
excludedcols += ['Protocol', 'EventLabel', 'Regions0', 'Regions1', 'Regions2',
'Regions3', 'Gates', 'IndexSort', 'SaturatedChannels', 'PhaseOffset',
'PlateLocationX', 'PlateLocationY', 'EventNumber0', 'EventNumber1',
'DeltaTime0', 'DeltaTime1', 'DropId', 'SaturatedChannels1',
'SaturatedChannels2', 'SpectralEventWidth', 'EventWidthInDrops',
'SpectralUnmixingFlags', 'WaveformPresent']
# Path to the global CSV file containing feature names
class WorkerThread(QThread):
progress_update = pyqtSignal(int)
intermediate_result = pyqtSignal(dict)
result_ready = pyqtSignal()
def __init__(self, data):
super().__init__()
self.data = data
N = self.data.shape[0]
self.n=BOOTSIZE
self.boots = BOOT
if N<self.n:
self.n = int(max([N/2,2]))
self.boots = N
self.k =int(self.n/3)
self.mode = 'cosine'
self.t = 1
self.progress = 0
self.early = 0
def run(self):
for i in range(self.boots):
result = self.process_part(i)
self.intermediate_result.emit(result)
self.progress += 1
if self.early:
break
self.result_ready.emit()
def process_part(self, i):
ls,medoids,medlabels = self.get_ulscore_parralel()
return {"value": ls,"i": i,"medoids": medoids,"membership":medlabels}
def getclust(self,mems):
memlabels = np.unique(mems.flatten())
D = np.zeros([mems.shape[0],mems.shape[0]])
for m in memlabels:
mem = (mems == m)*1.
D += mem @ mem.T
np.fill_diagonal(D,0)
return np.array(la.find_partition(ig.Graph.Adjacency(D), la.ModularityVertexPartition).membership)
def kmedoids(self,X):
if CLUSTERS<=self.data.shape[1]/20:
clusters = CLUSTERS
else:
clusters = int(self.data.shape[1]/20)
model = KMedoids(n_clusters=clusters,method='pam').fit(X)
medoids = model.medoid_indices_
medlabels = model.labels_
return medoids,medlabels
def get_ulscore_parralel(self):
n = self.n
ones = np.ones((n,1))
sample = np.random.choice(self.data.shape[0],n)
Xsub = self.data[sample,:]
Wsub = self.get_similaritymatrix(Xsub)
Dsub = np.diagflat(np.sum(Wsub,axis=0))
Lsub = Dsub - Wsub
LSsub = np.zeros(Xsub.shape[1])
for r in range(Xsub.shape[1]):#iterate over features
fsubr = Xsub[:,r].reshape([-1,1])
neighb_est = ((fsubr.T @ Dsub @ ones).item()/ (ones.T @ Dsub @ ones).item())*ones
fsubr_est = (fsubr - neighb_est)#subtract nbh mean est of feature to centre feature vector
d = (fsubr_est.T @ Dsub @ fsubr_est).item()
num = (fsubr_est.T @ Lsub @ fsubr_est).item()
if d > 0 and num>0:
LSsub[r] = num/d
elif num==0 and d>0:
LSsub[r] = 0
else:
LSsub[r] = np.inf
medoids,medlabels = self.kmedoids(Xsub.T)
return LSsub,medoids,medlabels
def get_similaritymatrix(self,X):
t = self.t
k = self.k
n = X.shape[0]
# compute pairwise distances
D = self.getpwd(X,self.mode)
Dtop = np.sort(D, axis=1)[:,k+1]
G = D<=Dtop
np.fill_diagonal(G,0)
W = np.zeros([n,n])
if self.mode=='heat':
W[G>0] = np.exp(-D[G>0]**2/(2*t**2))
else:#cosine is default
W[G>0] = np.abs(1-D[G>0])
return W
def getpwd(self,X,mode='cosine'):
if mode == 'heat':#heat kernel based pwd (euclidean)
D = pairwise_distances(X)
if mode == 'cosine':#cosine pwd
D = pairwise_distances(X,metric='cosine')
return D
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("FlowFI: Flow cytometry Feature Importance")
self.setGeometry(100, 100, 800, 600)
self.central_widget = QWidget()
self.setCentralWidget(self.central_widget)
self.layout = QVBoxLayout()
# Input field for filepath
self.filepath_input = QLineEdit()
self.filepath_input.setPlaceholderText("Enter file path here")
self.browse_button = QPushButton("Browse")
self.browse_button.clicked.connect(self.browse_file)
self.input_layout = QHBoxLayout()
self.input_layout.addWidget(self.filepath_input)
self.input_layout.addWidget(self.browse_button)
# Button to execute the function
self.execute_button = QPushButton("Execute")
self.execute_button.clicked.connect(self.execute_function)
self.checkbox_layout = QHBoxLayout()
self.ftypes = ['UV','V','B','YG','R','ImgB','Imaging','Misc']
self.colors = ['green','darkviolet','blue','darkgoldenrod','darkred','saddlebrown','teal','black']
self.clustercolors = ['lightcoral','palegoldenrod','palegreen','lightblue','aquamarine','dimgray','peru','darkseagreen','white','cornflowerblue','green','darkviolet','blue','darkgoldenrod','darkred','saddlebrown','teal','black']
self.selected_feature_types = self.ftypes
self.feature_checkboxes = {}
for i,feature_type in enumerate(self.ftypes):
checkbox = QCheckBox(feature_type)
checkbox.setChecked(True)
checkbox.stateChanged.connect(self.update_display)
checkbox.setStyleSheet("color: " + self.colors[i])
self.feature_checkboxes[feature_type] = checkbox
self.checkbox_layout.addWidget(checkbox)
# Progress bar
self.progress_bar = QProgressBar()
self.progress_bar.setValue(0)
# Output display panel
self.output_panel = QScrollArea()
self.output_widget = QWidget()
self.output_layout = QVBoxLayout()
self.output_widget.setLayout(self.output_layout)
self.output_panel.setWidget(self.output_widget)
self.output_panel.setWidgetResizable(True)
# Sorting dropdown box
self.sort_dropdown = QComboBox()
self.sort_dropdown.addItem("Sort by: Importance (features that are important to the data structure)")
self.sort_dropdown.addItem("Sort by: Type (UV, V, etc.)")
self.sort_dropdown.addItem("Sort by: Cluster (similar features)")
self.sort_dropdown.addItem("Sort by: Centrality (featuress typical of a cluster)")
self.sort_dropdown.currentIndexChanged.connect(self.update_display)
self.layout.addLayout(self.checkbox_layout)
self.layout.addLayout(self.input_layout)
self.layout.addWidget(self.execute_button)
self.layout.addWidget(self.progress_bar)
self.layout.addWidget(self.sort_dropdown)
self.layout.addWidget(QLabel("Feature/Importance:"))
self.layout.addWidget(self.output_panel)
self.central_widget.setLayout(self.layout)
# Menu bar
self.create_menus()
self.update_timer = QTimer()
self.update_timer.timeout.connect(self.update_display)
# self.update_timer.timeout.connect(self.update_progress)
def create_menus(self):
menu_bar = self.menuBar()
# File menu
file_menu = menu_bar.addMenu('File')
save_action = QAction('Save Output as CSV', self)
save_action.triggered.connect(self.save_output)
file_menu.addAction(save_action)
# Help menu
help_menu = menu_bar.addMenu('Help')
readme_action = QAction('README', self)
readme_action.triggered.connect(self.show_readme)
help_menu.addAction(readme_action)
def browse_file(self):
options = QFileDialog.Options()
filepath, _ = QFileDialog.getOpenFileName(self, "Open File", "", "All Files (*)", options=options)
if filepath:
self.filepath_input.setText(filepath)
def execute_function(self):
filepath = self.filepath_input.text()
if not filepath:
QMessageBox.warning(self, "Warning", "Please enter a valid file path.")
return
self.filepath = filepath
self.load_features()
if not hasattr(self,'data'):
QMessageBox.warning(self, "Warning", "No features found in the FCS file.")
return
self.execute_button.setEnabled(False)
self.start_time = time.time()
self.output_layout.removeWidget(self.output_widget)
self.output_widget = QWidget()
self.output_layout = QVBoxLayout()
self.output_widget.setLayout(self.output_layout)
self.output_panel.setWidget(self.output_widget)
self.progress_bar.setValue(0)
self.worker = WorkerThread(self.data)
self.boots = self.worker.boots
self.feature_averages = np.zeros((self.data.shape[1],self.boots))
self.calculated = np.zeros((self.boots))
self.medoids = np.zeros((self.data.shape[1],self.boots))
self.memberships = np.zeros((self.data.shape[1],self.boots))
self.finalcluster = False
# self.worker.progress_update.connect(self.update_progress)
self.worker.intermediate_result.connect(self.add_result)
self.worker.result_ready.connect(self.finalize_results)
self.worker.start()
self.update_timer.setInterval(10000)
self.update_timer.start()
QApplication.processEvents()
def load_features(self):
try:
fcdata = flowio.FlowData(self.filepath)
self.columns = np.array([fcdata.channels[c]['PnN'] for c in fcdata.channels])
self.data = np.reshape(fcdata.events,[-1,fcdata.channel_count])
self.cleandata()
# if SIM:
# n_features = self.data.shape[1]
# ninf = np.max([int(n_features*.01),1])
# nred = np.max([int(n_features*.01),1])
# cshape = int(self.data.shape[0]*.6)
# self.data,_ = make_classification(self.data.shape[0], n_features,n_repeated=0,weights=[.1],n_informative=ninf,n_redundant=nred,n_clusters_per_class=1,shuffle=False)
# ncontam = n_features - ninf - nred
# contam,_ = make_classification(cshape, ncontam,n_repeated=0,weights=[.5],n_informative=ncontam,n_redundant=0,n_clusters_per_class=1,shuffle=False)
# self.data[:cshape,-ncontam:] += contam
# self.meaningful = np.zeros(self.data.shape[1])
# self.meaningful[:(ninf+nred)] = 1
except Exception as e:
print(traceback.format_exc())
QMessageBox.critical(self, "Error", f"Failed to load features from FCS file: {e}")
def NormalizeData(self,data):
return (data - np.min(data)) / (np.max(data) - np.min(data))
def cleandata(self,norm=True):
included = [i for i,c in enumerate(self.columns) if c not in excludedcols]
self.columns = self.columns[included]
self.data = self.data[:,included]
# self.data,uind = np.unique(self.data,axis=1,return_index = True)
# self.columns = self.columns[uind]
# self.data = self.data[:,uind]
included = np.var(self.data,axis=0)>0
nondiverse = [i for i in range(self.data.shape[1]) if len(np.unique(self.data[:,i]).flatten())<10]
included[nondiverse] = 0
self.data = self.data[:,included]
self.columns = self.columns[included]
UVpattern = r'^UV\d+.*'
Vpattern = r'^V\d+.*'
Bpattern = r'^B\d+.*'
YGpattern = r'^YG\d+.*'
Rpattern = r'^R\d+.*'
ImgBpattern = r'^ImgB\d+.*'
Imagingpattern = r'.*\(Imaging\).*|.*Axis.*|.*Mass.*|.*Intensity.*|.*Moment.*|.*Size.*|.*Diffusivity.*|.*Eccentricity.*'
patterns = [UVpattern,Vpattern,Bpattern,YGpattern,Rpattern,ImgBpattern,Imagingpattern]
self.patternmatches = np.ones(len(self.columns))*len(patterns)
self.patternmatches = self.patternmatches.astype(int)
for k,p in enumerate(patterns):
matches = [i for i,c in enumerate(self.columns) if re.match(p,c)]
self.patternmatches[matches] = k
sort = np.argsort(self.patternmatches)
self.patternmatches = self.patternmatches[sort]
self.columns = self.columns[sort]
self.data = self.data[:,sort]
self.fcolors = np.array([self.colors[c] for c in self.patternmatches])
self.flabels = np.array([self.ftypes[c] for c in self.patternmatches])
self.filter = [i for i,f in enumerate(self.flabels) if f in self.selected_feature_types]
self.patternmatches = self.patternmatches[self.filter]
self.columns = self.columns[self.filter]
self.data = self.data[:,self.filter]
self.flabels = self.flabels[self.filter]
self.fcolors = self.fcolors[self.filter]
if norm:
self.data = StandardScaler().fit_transform(self.data)
def splittest(self,data,th=1e-2):
shape = data.shape[1]
inds = np.arange(shape)
np.random.shuffle(inds)
data = data[:,inds]
splitat = int(shape/2)
inds1 = inds[:splitat]
inds2 = inds[splitat:]
data1 = np.mean(data[:,inds1],axis=1)
data2 = np.mean(data[:,inds2],axis=1)
kt = kendalltau(data1,data2)
kt = kt.statistic
if 1-kt<=th:
return True,inds1,inds2
else:
return False,inds1,inds2
def consensusclustering_test(self,inds1,inds2,th=1e-2):
mems = self.memberships[:,self.calculated>0]
mems1 = mems[:,inds1]
mems2 = mems[:,inds2]
membership1 = self.worker.getclust(mems1)
membership2 = self.worker.getclust(mems2)
ami = adjusted_mutual_info_score(membership1,membership2)
return ami>th
def add_result(self, result):
value = result['value']
i = result['i']
self.medoids[list(result['medoids'].astype(int)),i] += 1
self.memberships[:,i] = result['membership']
self.feature_averages[:,i] = value
self.calculated[i] = 1
non0 = self.calculated>0
imp_calculated = self.feature_averages[:,non0]
mean_value = np.mean(imp_calculated,axis=1).flatten()
mdds = np.sum(self.medoids[:,non0],axis=1).flatten()
self.result = {'ls': mean_value,'i': i,'medoids': mdds,'membership':result['membership']}
if np.sum(self.calculated)>10:
isconv,inds1,inds2 = self.splittest(imp_calculated)
if isconv:
# print('The importance method converged at or before ',np.sum(self.calculated),' iterations')
# if SIM:
# mean_value = 1 - self.NormalizeData(self.result['ls'])
# nmean = np.sum(self.meaningful)
# found = np.argsort(-mean_value)<nmean
# found = np.dot(found,self.meaningful)
# print('Acccuracy',np.round(100*found/nmean,2))
isclust = self.consensusclustering_test(inds1,inds2)
if isclust:
# print('The clustering also converged at or before ',np.sum(self.calculated),' iterations')
self.end_time = time.time()
self.total_time = np.round(self.end_time - self.start_time,2)
# print('Processing time was',self.total_time)
self.worker.early = 1
def update_display(self):
self.selected_feature_types = [key for key, checkbox in self.feature_checkboxes.items() if checkbox.isChecked()]
if hasattr(self, 'result'):
filter = [i for i,f in enumerate(self.flabels) if f in self.selected_feature_types]
self.output_layout.removeWidget(self.output_widget)
self.output_widget = QWidget()
self.output_layout = QVBoxLayout()
self.output_widget.setLayout(self.output_layout)
self.output_panel.setWidget(self.output_widget)
mean_value = 1-self.NormalizeData(self.result['ls'])[filter]
# Sort the results based on the dropdown selection
sorting = True
if "Sort by: Importance" in self.sort_dropdown.currentText():
sort = np.argsort(-mean_value)
sorting = False
else:
second = -mean_value
if "Sort by: Type" in self.sort_dropdown.currentText():
first = self.flabels[filter]
elif "Sort by: Centrality" in self.sort_dropdown.currentText():
first = -self.result['medoids'][filter]
elif "Sort by: Cluster" in self.sort_dropdown.currentText() and self.finalcluster:
first = self.membership[filter]
else:#If nothing else works (i.e. clustering not ready) then sort by Importance
sort = np.argsort(second)
sorting = False
if sorting:
sort = np.lexsort([second,first])
sorting = False
colors = self.fcolors[filter][sort]
mean_value = mean_value[sort]
medoids = self.result['medoids'][filter][sort]
# topmeds = np.argsort(medoids)[::-1][:MEDS]
topmeds = np.where(medoids>0)[0]
texts = self.columns[filter][sort]
labels = self.flabels[filter][sort]
if self.worker.early:
self.worker.progress = self.boots
prog = int(100*self.worker.progress/self.boots)
self.progress_bar.setValue(prog)
if self.finalcluster:
membership = self.membership[filter][sort]
# membership = self.membership.astype(int)
memcolors = [self.clustercolors[m] for m in membership]
for i in range(len(filter)):
# Create a layout for each entry
entry_layout = QHBoxLayout()
text = texts[i]
# Create and style the label for the colored text
text_label = QLabel(text)
if self.finalcluster:
if i in topmeds:
text_label.setStyleSheet(f"color: {colors[i]};font-weight: bold;border: 3px solid {memcolors[i]};text-decoration: underline")
else:
text_label.setStyleSheet(f"color: {colors[i]};border: 3px solid {memcolors[i]};")
entry_layout.addWidget(text_label)
else:
if i in topmeds:
text_label.setStyleSheet(f"color: {colors[i]};font-weight: bold;text-decoration: underline")
else:
text_label.setStyleSheet(f"color: {colors[i]};")
entry_layout.addWidget(text_label)
# Create and style the bar for the value
bar = QFrame()
bar.setStyleSheet(f"background-color: {colors[i]};")
bar.setFixedHeight(10)
bar.setFixedWidth(int(mean_value[i] * 300)) # Adjust multiplier for visual effect
entry_layout.addWidget(bar)
# Create a container widget for the entry layout
entry_widget = QWidget()
entry_widget.setLayout(entry_layout)
# Add the entry widget to the output layout
self.output_layout.addWidget(entry_widget)
self.output_widget.adjustSize()
QApplication.processEvents()
def show_processing_time(self):
text = "Processing time: " + str(self.total_time) + 's'
QMessageBox.information(self, "Processing Time", text)
def consensusclustering_final(self):
self.membership = self.worker.getclust(self.memberships)
self.finalcluster = True
if EVAL == True:
self.end_time = time.time()
self.total_time = np.round(self.end_time - self.start_time,2)
self.show_processing_time()
self.execute_button.setEnabled(True)
def finalize_results(self):
if self.worker.early:
self.memberships = self.memberships[:,self.calculated>0]
self.feature_averages = self.feature_averages[:,self.calculated>0]
self.medoids = self.medoids[:,self.calculated>0]
self.output_widget.adjustSize()
self.consensusclustering_final()
self.update_display()
self.result['Relative Importance'] = 1 - self.NormalizeData(self.result['ls'])
self.result['Centrality'] = self.NormalizeData(self.result['medoids'])
self.result['Membership'] = self.membership
QMessageBox.information(self, "Information", "Processing complete!")
self.update_timer.stop() # Stop the update timer
def save_output(self):
if not self.result:
QMessageBox.warning(self, "Warning", "There is no output to save.")
return
options = QFileDialog.Options()
filepath, _ = QFileDialog.getSaveFileName(self, "Save Output", "", "CSV Files (*.csv)", options=options)
if filepath:
try:
with open(filepath, 'w', newline='') as csvfile:
fieldnames = ['feature','ri', 'ls','membership','centrality']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
result = self.result['ls']
impresult = self.result['Relative Importance']
columns = self.columns
memb = self.result['Membership']
centrality = self.result['Centrality']
for i in range(len(result)):
writer.writerow({'feature': columns[i], 'ri': impresult[i], 'ls': result[i],'membership':memb[i],'centrality': centrality[i]})
QMessageBox.information(self, "Success", "Output successfully saved to CSV file.")
except Exception as e:
QMessageBox.critical(self, "Error", f"Failed to save output to CSV file: {e}")
def show_readme(self):
readme_text = """
This is the README for the Feature Importance Program.
1. Enter the .fsc file path manually or click 'Browse' to select a file.
2. Click 'Execute' to calculate the feature importance.
3. Features will be shown from most to least important.
4. The bar next to the feature name corresponds to relative feature importance.
5. Use the boxes to toggle which types of features to display.
6. De/selected boxes and executing allows you to test a subset of features.
7. Use the 'File' menu to save the output as a CSV file.
8. ri = (Relative) Importance, ls = Raw (Laplacian) Score, membership = Cluster, centrality = Representativeness
"""
QMessageBox.information(self, "README", readme_text)
if __name__ == '__main__':
app = QApplication(sys.argv)
main_window = MainWindow()
main_window.show()
sys.exit(app.exec_())