-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathStOMP.m
172 lines (130 loc) · 4.6 KB
/
StOMP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
clear all;
close all;
clc;
% Written in Matlab 2017a
% Meghasyam Tummalacherla
% ECE 285: Special Topics in Linear Algebra
% Part of the project Orthogonal Matching Pursuit (OMP) and variants
%% Stage Wise Orthogonal Matching pursuit: Setting up the Problem
% Define the size of the random matrix phi = mxn
m = 50; % no. of rows
n = 90; % no. of columns
% The entries of phi are i.i.d entries draw from a standard normal
% distribution
phi_mat = randn(m,n);
% Making phi_mat a sample from the Uniform Spherical Ensemble (USE)
for col_no = 1:size(phi_mat,2)
phi_mat(:, col_no) = phi_mat(:, col_no)/norm(phi_mat(:, col_no));
end
% Sparsity of the sparse vector
s0 = 9; % No of non zero elements in x
% Range of x is from [-10 -1] U [1 10] and it is a uniform distribution
% So we will construct a variable int_ind (interval indicator) which is a
% uniform variable which can take values <0.5 for the negative interval and
% >=0.5 for the positive interval.
% Based on the int_ind, we will now pick up a uniform sample from the
% selected interval
x = zeros(n,1); % Initializing x
% The intervals from which we pick up x
int_1 = [-10 -1];
int_2 = [10 1];
% Deciding the random positions of x, which contain the non zero values
x_pos = [];
while length(x_pos)<s0
x_pos = unique(randi(n, [1 s0]));
end
% Filling up the non zero values from a uniform distribution
for j=1:s0
% Choosing the interval
int_ind = rand(1);
if int_ind >=0.5
int_curr = int_1;
else
int_curr = int_2;
end
% Drawing the uniform random value from the chosen interval
curr_val = int_curr(1)*rand(1) + int_curr(2);
% Filling up the non zero positions
x(x_pos(j)) = curr_val;
end
%
% figure(1);
% subplot(2,1,1);
% stem(x);
% title('The sparse vector x');
% Generating the noise n_eta
sigma_eta = 1; % The variance of the noise signal
mean_eta = 0; % Mean of noise is zero (given)
n_eta = sigma_eta*randn([m 1]) + mean_eta;
n_eta = n_eta/norm(n_eta);% Making the noise unit norm
norm_n_eta = 0; % Setting the norm of the noise
n_eta = norm_n_eta*n_eta;
%% The algorithm StOMP
y = phi_mat*x + n_eta; % The measured signal
n = size(phi_mat,1); % The size of the required signal x
max_stages = 10; % Max no.of stages for our StOMP algorithm
% Stopping threshold for error
if norm_n_eta > 0
thresh = norm_n_eta;
else
thresh = 10^-10;
end
x_s = 0*x; % initial estimate of x
residual_curr = y; % initial estimate of the residual
I_s = []; % The support of the signal x_s, initialized to an empty set
for stage_no = 1:max_stages
% Estimate of the residual correlations for the current iteration
c_s = (phi_mat')*residual_curr;
% The formal noise level
sigma_s = norm(residual_curr)/sqrt(n);
% The allowable fraction of false positives
q = 0.5;
% Finding the threshold parameter t_s using False Discovery rate (FDR)
% or False Dicovery control
t_s = fdrthresh(c_s/sigma_s, q);
% Find support of c_s that is greater than the set threshold
J_s = find(abs(c_s) > sigma_s*t_s);
I_snew = [I_s; J_s]; % The merged support
I_snew = unique(I_snew); % Disregarding repeated columns
% Stopping criteria, if no new elements for the support are found, then
% halt
if length(I_snew) == length(I_s)
break
else
I_s = I_snew;
end
% Updating the current I_s to the new I_snew
I_s = I_snew;
% Finding the basis columns of the merged support
phi_mat_I_s = zeros(n, length(I_s));
for col_no = 1: length(I_s)
phi_mat_I_s(:, col_no) = phi_mat(:, I_s(col_no));
end
% Estimating x_s_I_s from the current merged support
x_s_I_s = pinv((phi_mat_I_s')*phi_mat_I_s)*(phi_mat_I_s')*y;
% Filling up the values of x_s from x_s_I_s at the correct positions of
% the support
x_s = zeros(size(x));
for col_no = 1:length(I_s)
x_s(I_s(col_no)) = x_s_I_s(col_no);
end
% Updating the residual
residual_curr = y - phi_mat*x_s;
% Stopping criteria, checking for threshold
if norm(residual_curr) < thresh
break
end
end
% Plots to compare the actual signal and the estimated signal x_s
figure(2);
subplot(2,1,1);
stem(x);
title(['Actual signal, s = ' num2str(s0)]);
xlabel('index');
ylabel('magnitude');
figure(2);
subplot(2,1,2);
stem(x_s);
title(['Estimated signal, ' '||noise||_2 = ' num2str(norm_n_eta)]);
xlabel('index');
ylabel('magnitude');