-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathClassifier.py
247 lines (191 loc) · 10.7 KB
/
Classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import tensorflow as tf
import numpy as np
class classifier(object):
def __init__(self, hParams):
self.HP = hParams
self.max_gradient_norm = hParams.MAX_GRADIANT_NORM
self.global_step = tf.Variable(0, trainable=False, name='global_step')
self.global_epoch_step = tf.Variable(0, trainable=False, name='global_epoch_step')
self.global_epoch_step_op = tf.assign(self.global_epoch_step, self.global_epoch_step+1)
self.init_placeholders()
self.init_embedding()
self.build_graph()
# Construct graphs for minimizing loss
self.init_optimizer()
self.init_prediction()
self.summary_op = tf.summary.merge_all()
def init_placeholders(self):
# shape= [batch, max_sentences, words + <eos>]
self.inputs = tf.placeholder(dtype=tf.int32,
shape=(self.HP.BATCH_SIZE, self.HP.MAX_SENT, self.HP.MAX_WORD+1),
name="inputs")
# shape = [batch]
self.labels = tf.placeholder(dtype=tf.int32, shape=(self.HP.BATCH_SIZE,), name="labels")
# shape = [batch, sentences]
self.sent_len = tf.placeholder(dtype=tf.int32, shape=(self.HP.BATCH_SIZE, self.HP.MAX_SENT), name="sentences_length")
# shape = [batch]
self.docs_len = tf.placeholder(dtype=tf.int32, shape=(self.HP.BATCH_SIZE), name="docs_length")
# dropout
self.keep_prob = tf.placeholder(dtype=tf.float32, shape=(), name="keep_prob")
def init_embedding(self):
self.emb_weights = tf.Variable(tf.constant(0.0,
shape=[self.HP.VOCAB_LEN, self.HP.EMB_DIM],dtype=tf.float32),
trainable=False,
name="embeddingWeights")
self.embedding_placeholder = tf.placeholder(dtype=tf.float32,
shape=[self.HP.VOCAB_LEN, self.HP.EMB_DIM],
name="weights_placeholder")
self.embeddings = self.emb_weights.assign(self.embedding_placeholder)
# assign embeding
def assign_embedding(self, sess, weights):
sess.run(self.embeddings, feed_dict={self.embedding_placeholder:weights})
def assign_encoder(self, sess, kernel, bias, trainable):
# TODO: correct the dimensions
trained_kernel = tf.placeholder(dtype=tf.float32, shape=(556, 1024), name="trained_kernel")
trained_bias = tf.placeholder(dtype=tf.float32, shape=(1024,), name="trained_bias")
xavi_kernel = self.get_var(name="rnn/basic_lstm_cell/kernel:0")
if xavi_kernel is None:
raise ValueError("there is no kernel")
xavi_bias = self.get_var(name="rnn/basic_lstm_cell/bias:0")
if xavi_bias is None:
raise ValueError("there is no Bias")
xavi_kernel.trainable = trainable
xavi_bias.trainable = trainable
kernel_assign_op = xavi_kernel.assign(trained_kernel)
bias_assign_op = xavi_bias.assign(trained_bias)
sess.run([kernel_assign_op, bias_assign_op],
feed_dict={trained_kernel:kernel,
trained_bias:bias})
def build_graph(self):
xavi = tf.contrib.layers.xavier_initializer()
l2_reg = tf.contrib.layers.l2_regularizer(0.1)
# reshape to = [batch_size * max_sent, words] TODO: max_sent is hard coded
inputs = tf.reshape(self.inputs, shape=(self.HP.BATCH_SIZE*self.HP.MAX_SENT, -1))
# reshape inputs len too
inputs_len = tf.reshape(self.sent_len, shape=(-1,))
with tf.device('/cpu:0'):
# shape = [batch_size * max_sent, words, emb_dim]
self.inputs_embedded = tf.nn.embedding_lookup(params=self.emb_weights, ids=inputs)
with tf.name_scope("encoder"):
self.encoder_cell = tf.nn.rnn_cell.BasicLSTMCell(self.HP.AE_LSTM_UNITS)
# encoder_outputs: [batch_size * max_sent, words, cell_output_size]
inputs, _ = tf.nn.dynamic_rnn(cell=self.encoder_cell,
inputs=self.inputs_embedded,
sequence_length=inputs_len,
dtype=tf.float32,
time_major=False)
with tf.name_scope("reshaping"):
# reshape to [batch_size * max_sent * words, cell_output_size]
inputs = tf.reshape(inputs, shape=(-1, self.HP.AE_LSTM_UNITS))
inputs = tf.layers.dense(inputs, self.HP.DENSE_REDUCER,
activation=tf.nn.relu,
kernel_initializer=xavi,
kernel_regularizer=l2_reg)
# reshape back to [batch_size, max_sen, -1]
inputs = tf.reshape(inputs, shape=(self.HP.BATCH_SIZE, self.HP.MAX_SENT, -1))
with tf.variable_scope("classifier"):
# initial classifier LSTM cell
classifier_cell = tf.nn.rnn_cell.BasicLSTMCell(self.HP.LSTM_UNITS)
# wrap classifier cell inside a dropout
classifier_cell = tf.contrib.rnn.DropoutWrapper(classifier_cell,
output_keep_prob=self.keep_prob,
seed = self.HP.SEED)
# classifier_outputs = [batch_size, max_sent, cell_output_size]
classifier_outputs, _ = tf.nn.dynamic_rnn(cell=classifier_cell,
inputs=inputs,
sequence_length=self.docs_len,
dtype=tf.float32,
time_major=False)
with tf.name_scope("densing"):
# flatten outputs
inputs = tf.contrib.layers.flatten(classifier_outputs)
# drop out some values
inputs = tf.nn.dropout(inputs, keep_prob=self.keep_prob)
# reduce dimension
inputs = tf.layers.dense(inputs, self.HP.DENSE_1,
activation=tf.nn.relu,
kernel_initializer=xavi,
kernel_regularizer=l2_reg)
# drop out some values
inputs = tf.nn.dropout(inputs, keep_prob=self.keep_prob)
# reduce dimension
inputs = tf.layers.dense(inputs, self.HP.DENSE_2,
activation=tf.nn.relu,
kernel_initializer=xavi,
kernel_regularizer=l2_reg)
with tf.name_scope("logits"):
# calculate logits
self.logits = tf.layers.dense(inputs, self.HP.N_LABELS)
oh = tf.one_hot(self.labels, self.HP.N_LABELS, dtype=tf.float32)
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=oh, logits=self.logits))
tf.summary.scalar('loss', self.loss)
def init_prediction(self):
# calculate prediction for validation set
with tf.name_scope("prediction"):
pred = tf.nn.softmax(self.logits)
pred = tf.argmax(pred, axis=1, output_type=tf.int32)
correct_prediction = tf.equal(pred, self.labels)
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
def init_optimizer(self):
with tf.name_scope("optimizer"):
trainable_params = tf.trainable_variables()
learning_rate = tf.train.exponential_decay(self.HP.LEARNING_RATE, self.global_step,
self.HP.DECAY_STEP, self.HP.DECAY_RATE, staircase=True)
self.opt = tf.train.AdamOptimizer(learning_rate=learning_rate)
# Compute gradients of loss w.r.t. all trainable variables
gradients = tf.gradients(self.loss, trainable_params)
# Clip gradients by a given maximum_gradient_norm
clip_gradients, _ = tf.clip_by_global_norm(gradients, self.HP.MAX_GRADIANT_NORM)
# Update the model
self.updates = self.opt.apply_gradients(zip(clip_gradients, trainable_params),
global_step=self.global_step)
def restore(self, sess, path, var_list=None):
# var_list = None returns the list of all saveable variables
saver = tf.train.Saver(var_list)
saver.restore(sess, save_path=path)
print('model restored from %s' % path)
def get_var(self, name):
for v in tf.trainable_variables():
if v.name==name:
return v
return None
def train(self, sess, inputs, sent_len, docs_len, labels, keep_prob):
sent_len = np.asarray(sent_len)
docs_len = np.asarray(docs_len)
labels = np.asarray(labels)
input_feed = {}
input_feed[self.inputs.name] = inputs
input_feed[self.sent_len.name] = sent_len
input_feed[self.docs_len.name] = docs_len
input_feed[self.labels.name] = labels
input_feed[self.keep_prob.name] = keep_prob
output_feed = [self.updates, # Update Op that does optimization
self.loss, # Loss for current batch
self.summary_op]
outputs = sess.run(output_feed, input_feed)
return outputs[1], outputs[2]
def eval(self, sess, inputs, sent_len, docs_len, labels, keep_prob):
sent_len = np.asarray(sent_len)
docs_len = np.asarray(docs_len)
labels = np.asarray(labels)
input_feed = {}
input_feed[self.inputs.name] = inputs
input_feed[self.sent_len.name] = sent_len
input_feed[self.docs_len.name] = docs_len
input_feed[self.labels.name] = labels
input_feed[self.keep_prob.name] = keep_prob
output_feed = [self.loss,
self.summary_op,
self.accuracy]
outputs = sess.run(output_feed, input_feed)
return outputs[0], outputs[1], outputs[2]
# def predict(self, sess, encoder_inputs, encoder_inputs_length):
# # Input feeds for dropout
# # input_feed[self.keep_prob_placeholder.name] = 1.0
# sent_len = np.asarray(sent_len)
# docs_len = np.asarray(docs_len)
# labels = np.asarray(labels)
# output_feed = [self.decoder_pred_decode]
# outputs = sess.run(output_feed, input_feed)
# # GreedyDecoder: [batch_size, max_time_step]
# return outputs[0]