-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathdist_preprocess_large.py
108 lines (87 loc) · 3.22 KB
/
dist_preprocess_large.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/python3
import sys
import queue
# Maximum allowed edge length
maxlen = 2 * 10**6
class DistPreprocessLarge:
def __init__(self, n, adj, cost):
# See description of these parameters in the starter for
# friend_suggestion
self.n = n
self.INFINITY = n * maxlen
self.adj = adj
self.cost = cost
self.bidistance = [[self.INFINITY] * n, [self.INFINITY] * n]
self.visited = [False] * n
self.visited = []
self.q = queue.PriorityQueue()
# Levels of nodes for node ordering heuristics
self.level = [0] * n
# Positions of nodes in the node ordering
self.rank = [0] * n
# Implement preprocessing here
pass
def mark_visited(self, x):
if not self.visited[x]:
self.visited[x] = True
self.visited.append(x)
def add_arc(self, u, v, c):
def update(adj, cost, u, v, c):
for i in range(len(adj[u])):
if adj[u][i] == v:
cost[u][i] = min(cost[u][i], c)
return
adj[u].append(v)
cost[u].append(c)
update(self.adj[0], self.cost[0], u, v, c)
update(self.adj[1], self.cost[1], v, u, c)
# Makes shortcuts for contracting node v
def shortcut(self, v):
# Implement this method yourself
# Compute the node importance in the end
shortcut_count = 0
neighbors = 0
shortcut_cover = 0
level = 0
# Compute correctly the values for the above heuristics before
# computing the node importance
importance = (shortcut_count - len(self.adj[0][v]) - len(
self.adj[1][v])) + neighbors + shortcut_cover + level
return importance, shortcuts, level
# See description of this method in the starter for friend_suggestion
def clear(self):
for v in self.visited:
self.bidistance[0][v] = self.bidistance[1][v] = self.INFINITY
self.visited[v] = False
del self.visited[:]
# See description of this method in the starter for friend_suggestion
def visit(self, side, v, dist):
# Implement this method yourself
pass
# Returns the distance from s to t in the graph
def query(self, s, t):
q = [queue.PriorityQueue(), queue.PriorityQueue()]
estimate = self.INFINITY
self.visit(0, s, 0)
self.visit(1, t, 0)
# Implement the rest of the algorithm yourself
return -1 if estimate == self.INFINITY else estimate
def readl():
return map(int, sys.stdin.readline().split())
if __name__ == '__main__':
n, m = readl()
adj = [[[] for _ in range(n)], [[] for _ in range(n)]]
cost = [[[] for _ in range(n)], [[] for _ in range(n)]]
for e in range(m):
u, v, c = readl()
adj[0][u - 1].append(v - 1)
cost[0][u - 1].append(c)
adj[1][v - 1].append(u - 1)
cost[1][v - 1].append(c)
ch = DistPreprocessLarge(n, adj, cost)
print("Ready")
sys.stdout.flush()
t, = readl()
for i in range(t):
s, t = readl()
print(ch.query(s - 1, t - 1))