We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Here is my code
import numpy as np import sys import os
caffe_root = '/opt/caffe/' sys.path.insert(0, os.path.join(caffe_root, 'python'))
import caffe from caffe.proto import caffe_pb2
caffe.set_mode_gpu() model_dir = 'model' deploy_file = os.path.join(model_dir, 'deploy.prototxt') weights_file = os.path.join(model_dir, 'snapshot_iter_64980.caffemodel') net = caffe.Net(deploy_file, caffe.TEST, weights=weights_file)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2, 0, 1)) transformer.set_raw_scale('data', 255) transformer.set_channel_swap('data', (2, 1, 0))
mean_file = os.path.join(model_dir, 'mean.binaryproto') with open(mean_file, 'rb') as infile: blob = caffe_pb2.BlobProto() blob.MergeFromString(infile.read()) if blob.HasField('shape'): blob_dims = blob.shape assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is %s' % blob.shape elif blob.HasField('num') and blob.HasField('channels') and blob.HasField('height') and blob.HasField('width'): blob_dims = (blob.num, blob.channels, blob.height, blob.width) else: raise ValueError('blob does not provide shape or 4d dimensions') pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1) transformer.set_mean('data', pixel) labels_file = os.path.join(model_dir, 'labels.txt') labels = np.loadtxt(labels_file, str, delimiter='\n')
image = caffe.io.load_image('test_img.jpg')
net.blobs['data'].data[...] = transformer.preprocess('data', image)
out = net.forward()
softmax_layer = out['softmax']
LLPM_prob = softmax_layer.item(0) OK_prob = softmax_layer.item(1) YSBD_prob = softmax_layer.item(2) YSCQ_prob = softmax_layer.item(3)
print(LLPM_prob) print(OK_prob) print(YSBD_prob) print(YSCQ_prob) `
4.98672634421e-05 0.00573868537322 0.993777871132 0.000433590757893
The text was updated successfully, but these errors were encountered:
No branches or pull requests
1.Digit Result
2.Python Result From This Tutorial
Here is my code
import numpy as np
import sys
import os
caffe_root = '/opt/caffe/'
sys.path.insert(0, os.path.join(caffe_root, 'python'))
import caffe
from caffe.proto import caffe_pb2
caffe.set_mode_gpu()
model_dir = 'model'
deploy_file = os.path.join(model_dir, 'deploy.prototxt')
weights_file = os.path.join(model_dir, 'snapshot_iter_64980.caffemodel')
net = caffe.Net(deploy_file, caffe.TEST, weights=weights_file)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1))
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2, 1, 0))
mean_file = os.path.join(model_dir, 'mean.binaryproto')
with open(mean_file, 'rb') as infile:
blob = caffe_pb2.BlobProto()
blob.MergeFromString(infile.read())
if blob.HasField('shape'):
blob_dims = blob.shape
assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is %s' % blob.shape
elif blob.HasField('num') and blob.HasField('channels') and
blob.HasField('height') and blob.HasField('width'):
blob_dims = (blob.num, blob.channels, blob.height, blob.width)
else:
raise ValueError('blob does not provide shape or 4d dimensions')
pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
transformer.set_mean('data', pixel)
labels_file = os.path.join(model_dir, 'labels.txt')
labels = np.loadtxt(labels_file, str, delimiter='\n')
image = caffe.io.load_image('test_img.jpg')
net.blobs['data'].data[...] = transformer.preprocess('data', image)
out = net.forward()
softmax_layer = out['softmax']
LLPM_prob = softmax_layer.item(0)
OK_prob = softmax_layer.item(1)
YSBD_prob = softmax_layer.item(2)
YSCQ_prob = softmax_layer.item(3)
print(LLPM_prob)
print(OK_prob)
print(YSBD_prob)
print(YSCQ_prob)
`
My Python Result:
4.98672634421e-05
0.00573868537322
0.993777871132
0.000433590757893
The text was updated successfully, but these errors were encountered: