Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Memory leak on python 3.10.* #35434

Open
2 of 4 tasks
KhoiTrant68 opened this issue Dec 27, 2024 · 2 comments
Open
2 of 4 tasks

Memory leak on python 3.10.* #35434

KhoiTrant68 opened this issue Dec 27, 2024 · 2 comments
Labels
bug dependencies Pull requests that update a dependency file

Comments

@KhoiTrant68
Copy link

KhoiTrant68 commented Dec 27, 2024

System Info

A memory leak is observed when using the KVEmbedding class with Python version 3.10.*. The same code does not exhibit the memory leak issue when running on Python 3.8.11. The issue may arise due to differences in how Python 3.10.* handles memory allocation, deallocation, or compatibility with the libraries used.


Setup:

  1. Environment:

    • Python 3.8.11 (No memory leak observed)
    • Python 3.10.* (Memory leak occurs)
  2. Dependencies:

    • tokenizers==0.20.3
    • torch==2.0.1+cu117
    • torchvision==0.15.2+cu117
    • tqdm==4.67.0
    • transformers==4.46.0

Attempts to Resolve:
We tried various strategies to address the memory leak, but none were successful. These include:

  1. Explicit Garbage Collection:
    • Used gc.collect() to manually invoke garbage collection after each batch.
  2. Variable Deletion:
    • Explicitly deleted intermediate variables with del to release memory.
  3. CUDA Cache Management:
    • Used torch.cuda.empty_cache() to free up GPU memory.
  4. Library Versions:
    Tried multiple versions of tokenizers and transformers libraries but observed no improvement.

Despite these efforts, the memory leak persisted in Python 3.10.*.


Call for Assistance: We have exhausted our efforts to identify and resolve the memory leak issue. If anyone with expertise in Python memory management, PyTorch, or Hugging Face Transformers can assist, we would greatly appreciate your help

Who can help?

@ArthurZucker

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder (such as GLUE/SQuAD, ...)
  • My own task or dataset (give details below)

Reproduction

import profile
import torch
import torch.nn.functional as F
from transformers import AutoModel
from transformers import AutoTokenizer
import gc
import numpy as np
import onnxruntime as ort
from faker import Faker
from memory_profiler import profile
from typing import Mapping, Dict, List
import json
# Create a Faker instance with Japanese locale
fake = Faker('ja_JP')

# Generate random Japanese text
def generate_random_japanese_text():
    return fake.text()
def move_to_cuda(sample):
            if len(sample) == 0:
                return {}

            def _move_to_cuda(maybe_tensor):
                if torch.is_tensor(maybe_tensor):
                    return maybe_tensor.cuda(non_blocking=True)
                elif isinstance(maybe_tensor, dict):
                    return {key: _move_to_cuda(value) for key, value in maybe_tensor.items()}
                elif isinstance(maybe_tensor, list):
                    return [_move_to_cuda(x) for x in maybe_tensor]
                elif isinstance(maybe_tensor, tuple):
                    return tuple([_move_to_cuda(x) for x in maybe_tensor])
                elif isinstance(maybe_tensor, Mapping):
                    return type(maybe_tensor)({k: _move_to_cuda(v) for k, v in maybe_tensor.items()})
                else:
                    return maybe_tensor

            return _move_to_cuda(sample)
        
def create_batch_dict(tokenizer, input_texts, max_length: int = 512):
    return tokenizer(
        input_texts,
        max_length=max_length,
        padding=True,
        pad_to_multiple_of=8,
        return_token_type_ids=False,
        truncation=True,
        return_tensors='pt'
    )
def pool(last_hidden_states,
    attention_mask,
    pool_type: str):
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)

    if pool_type == "avg":
        emb = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
    elif pool_type == "weightedavg":  # position-weighted mean pooling from SGPT (https://arxiv.org/abs/2202.08904)
        attention_mask *= attention_mask.cumsum(dim=1)  # [0,1,1,1,0,0] -> [0,1,2,3,0,0]
        s = torch.sum(last_hidden * attention_mask.unsqueeze(-1).float(), dim=1)
        d = attention_mask.sum(dim=1, keepdim=True).float()
        emb = s / d
    elif pool_type == "cls":
        emb = last_hidden[:, 0]
    elif pool_type == "last":
        left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
        if left_padding:
            emb = last_hidden[:, -1]
        else:
            sequence_lengths = attention_mask.sum(dim=1) - 1
            batch_size = last_hidden.shape[0]
            emb = last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
    else:
        raise ValueError(f"pool_type {pool_type} not supported")

    return emb

class KVEmbedding:
    def __init__(self, device):
        self.device = device

        # Load tokenizer and model from pretrained multilingual-e5-small
        self.tokenizer = AutoTokenizer.from_pretrained("intfloat/multilingual-e5-small")
        self.model = AutoModel.from_pretrained("intfloat/multilingual-e5-small").to(self.device)

        self.model.eval()  # Set model to evaluation mode

    def average_pool(self, last_hidden_states, attention_mask):
        # Apply mask to hidden states, set masked positions to 0
        last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
        # Average the hidden states along the sequence dimension
        return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
    
    @profile
    def embedding(self, l_transcription, batch_size=32):
        # Tokenize input transcriptions
        batch_dict = self.tokenizer(
            l_transcription,
            max_length=512,
            padding=True,
            truncation=True,
            return_tensors="pt",
        ).to(self.device)

        return batch_dict
    def _do_encode(self, input_texts) -> np.ndarray:
        encoded_embeds = []
        batch_size = 64 
        for start_idx in range(0, len(input_texts), batch_size):
            batch_input_texts = input_texts[start_idx: start_idx + batch_size]

            batch_dict = create_batch_dict(self.tokenizer, batch_input_texts)
            batch_dict = move_to_cuda(batch_dict)
        return encoded_embeds


import random
from faker import Faker

# # Lists of Japanese characters
hiragana = ["あ", "い", "う", "え", "お", "か", "き", "く", "け", "こ", "さ", "し", "す", "せ", "そ", "た", "ち", "つ", "て", "と", "な", "に", "ぬ", "ね", "の", "は", "ひ", "ふ", "へ", "ほ", "ま", "み", "む", "め", "も", "や", "ゆ", "よ", "ら", "り", "る", "れ", "ろ", "わ", "を", "ん"]
katakana = ["ア", "イ", "ウ", "エ", "オ", "カ", "キ", "ク", "ケ", "コ", "サ", "シ", "ス", "セ", "ソ", "タ", "チ", "ツ", "テ", "ト", "ナ", "ニ", "ヌ", "ネ", "ノ", "ハ", "ヒ", "フ", "ヘ", "ホ", "マ", "ミ", "ム", "メ", "モ", "ヤ", "ユ", "ヨ", "ラ", "リ", "ル", "レ", "ロ", "ワ", "ヲ", "ン"]
kanji = ["日", "本", "語", "学", "校", "生", "時", "間", "人", "大", "小", "中", "山", "川", "口", "目", "耳", "手", "足", "力", "男", "女", "子", "父", "母"]

# Combine all character sets
all_characters = hiragana + katakana + kanji

# Generate random Japanese text
def generate_random_japanese(length):
    return ''.join(random.choices(all_characters, k=length))

def remove_invalid_characters(valid_chars, text):
    """
    Removes all invalid characters from the given text, keeping only the characters present in char_dicts.

    Args:
    char_dicts (dict): Dictionary of valid characters.
    text (str): Input text string.

    Returns:
    str: Text string with only valid characters.
    """
      # Convert dict keys to a set for faster lookup
    filtered_text = ''.join(c for c in text if c in valid_chars)
    return filtered_text


if __name__ == "__main__":
    print("Start app ...")
    with open("multilingual-e5-small/tokenizer.json", 'r') as file:
        character_info = json.load(file)
    character_dict = {}
    print("Vocab is loading ...")
    for data in character_info["model"]["vocab"]:
        character_dict[data[0]] = data[1]
    valid_chars = set(character_dict.keys())
    print("Start loading model")
    kv_embedding = KVEmbedding('cuda')
    print("Loading model: Done!!!")
    for i in range(7500):
        print(f"============{i}==============")
        length = random.randint(600, 1000)
        # print(length)
        input_texts = []
        for s in range(length):
            text_length = random.randint(1, 10000)
            
            random_text = generate_random_japanese(text_length)
            
            # before = len(random_text)
            random_text = remove_invalid_characters(valid_chars, random_text)
            # after = len(random_text)
            # if after != before:
            #     print(before, after)
            random_text = random_text[:450]
            input_texts.append(random_text)
    
        filter_output = input_texts[:512]
        
        del input_texts

        # print(len(filter_output))

        output = kv_embedding.embedding(filter_output)

Logs

newplot

============4==============
Filename: test_kv_embed.py

Line #    Mem usage    Increment  Occurrences   Line Contents
=============================================================
    92   2293.9 MiB   2293.9 MiB           1       @profile
    93                                             def embedding(self, l_transcription, batch_size=32):
    94                                                 # Tokenize input transcriptions
    95   2295.7 MiB      1.8 MiB           3           batch_dict = self.tokenizer(
    96   2293.9 MiB      0.0 MiB           1               l_transcription,
    97   2293.9 MiB      0.0 MiB           1               max_length=512,
    98   2293.9 MiB      0.0 MiB           1               padding=True,
    99   2293.9 MiB      0.0 MiB           1               truncation=True,
   100   2293.9 MiB      0.0 MiB           1               return_tensors="pt",
   101   2295.7 MiB      0.0 MiB           1           ).to(self.device)
   102                                         
   103   2295.7 MiB      0.0 MiB           1           return batch_dict


============5==============
Filename: test_kv_embed.py

Line #    Mem usage    Increment  Occurrences   Line Contents
=============================================================
    92   2295.7 MiB   2295.7 MiB           1       @profile
    93                                             def embedding(self, l_transcription, batch_size=32):
    94                                                 # Tokenize input transcriptions
    95   2296.5 MiB      0.8 MiB           3           batch_dict = self.tokenizer(
    96   2295.7 MiB      0.0 MiB           1               l_transcription,
    97   2295.7 MiB      0.0 MiB           1               max_length=512,
    98   2295.7 MiB      0.0 MiB           1               padding=True,
    99   2295.7 MiB      0.0 MiB           1               truncation=True,
   100   2295.7 MiB      0.0 MiB           1               return_tensors="pt",
   101   2296.5 MiB      0.0 MiB           1           ).to(self.device)
   102                                         
   103   2296.5 MiB      0.0 MiB           1           return batch_dict

Expected behavior

No memory leaks occur on Python 3.10.*.

@duchieuphan2k1
Copy link

Same issue here? Any updates?

@LysandreJik LysandreJik added the dependencies Pull requests that update a dependency file label Dec 29, 2024
@gone2808
Copy link

gone2808 commented Jan 3, 2025

Hmm, Look great professor. Let me see

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug dependencies Pull requests that update a dependency file
Projects
None yet
Development

No branches or pull requests

4 participants