-
Notifications
You must be signed in to change notification settings - Fork 84
/
train.py
290 lines (234 loc) · 11.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import inspect
import os
import time
import sys
import numpy as np
import tensorflow as tf
import shutil
import data_engine
VGG_MEAN = [103.939, 116.779, 123.68]
image_height = 720
image_width = 960
feature_height = int(np.ceil(image_height / 16.))
feature_width = int(np.ceil(image_width / 16.))
class RPN:
def __init__(self, vgg16_npy_path=None):
if vgg16_npy_path is None:
path = inspect.getfile(Vgg16)
path = os.path.abspath(os.path.join(path, os.pardir))
path = os.path.join(path, 'vgg16.npy')
vgg16_npy_path = path
print path
self.data_dict = np.load(vgg16_npy_path, encoding='latin1').item()
print('npy file loaded')
def build(self, rgb, label, label_weight, bbox_target, bbox_loss_weight, learning_rate):
start_time = time.time()
print('build model started')
# Convert RGB to BGR
red, green, blue = tf.split(rgb, 3, 3)
assert red.get_shape().as_list()[1:] == [image_height, image_width, 1]
assert green.get_shape().as_list()[1:] == [image_height, image_width, 1]
assert blue.get_shape().as_list()[1:] == [image_height, image_width, 1]
bgr = tf.concat([
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2],
],3)
assert bgr.get_shape().as_list()[1:] == [image_height, image_width, 3]
# Conv layer 1
self.conv1_1 = self.conv_layer_const(bgr, 'conv1_1')
self.conv1_2 = self.conv_layer_const(self.conv1_1, 'conv1_2')
self.pool1 = self.max_pool(self.conv1_2, 'pool1')
# Conv layer 2
self.conv2_1 = self.conv_layer_const(self.pool1, 'conv2_1')
self.conv2_2 = self.conv_layer_const(self.conv2_1, 'conv2_2')
self.pool2 = self.max_pool(self.conv2_2, 'pool2')
# Conv layer 3
self.conv3_1, conv3_1_wd = self.conv_layer(self.pool2, 'conv3_1')
self.conv3_2, conv3_2_wd = self.conv_layer(self.conv3_1, 'conv3_2')
self.conv3_3, conv3_3_wd = self.conv_layer(self.conv3_2, 'conv3_3')
self.weight_dacay = conv3_1_wd + conv3_2_wd + conv3_3_wd
self.pool3 = self.max_pool(self.conv3_3, 'pool3')
# Conv layer 4
self.conv4_1, conv4_1_wd = self.conv_layer(self.pool3, 'conv4_1')
self.conv4_2, conv4_2_wd = self.conv_layer(self.conv4_1, 'conv4_2')
self.conv4_3, conv4_3_wd = self.conv_layer(self.conv4_2, 'conv4_3')
self.weight_dacay += conv4_1_wd + conv4_2_wd + conv4_3_wd
self.pool4 = self.max_pool(self.conv4_3, 'pool4')
# Conv layer 5
self.conv5_1, conv5_1_wd = self.conv_layer(self.pool4, 'conv5_1')
self.conv5_2, conv5_2_wd = self.conv_layer(self.conv5_1, 'conv5_2')
self.conv5_3, conv5_3_wd = self.conv_layer(self.conv5_2, 'conv5_3')
self.weight_dacay += conv5_1_wd + conv5_2_wd + conv5_3_wd
# RPN_TEST_6(>=7)
normalization_factor = tf.sqrt(tf.reduce_mean(tf.square(self.conv5_3)))
self.gamma3 = tf.Variable(np.sqrt(2), dtype=tf.float32, name='gamma3')
self.gamma4 = tf.Variable(1.0, dtype=tf.float32, name='gamma4')
# Pooling to the same size
self.pool3_p = tf.nn.max_pool(self.pool3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME',
name='pool3_proposal')
# L2 Normalization
self.pool3_p = self.pool3_p / (
tf.sqrt(tf.reduce_mean(tf.square(self.pool3_p))) / normalization_factor) * self.gamma3
self.pool4_p = self.pool4 / (
tf.sqrt(tf.reduce_mean(tf.square(self.pool4))) / normalization_factor) * self.gamma4
# Proposal Convolution
self.conv_proposal_3, conv_proposal_3_wd = self.conv_layer_new(self.pool3_p, 'conv_proposal_3',
kernel_size=[5, 2], out_channel=256, stddev=0.01)
self.relu_proposal_3 = tf.nn.relu(self.conv_proposal_3)
self.conv_proposal_4, conv_proposal_4_wd = self.conv_layer_new(self.pool4_p, 'conv_proposal_4',
kernel_size=[5, 2], out_channel=512, stddev=0.01)
self.relu_proposal_4 = tf.nn.relu(self.conv_proposal_4)
self.conv_proposal_5, conv_proposal_5_wd = self.conv_layer_new(self.conv5_3, 'conv_proposal_5',
kernel_size=[5, 2], out_channel=512, stddev=0.01)
self.relu_proposal_5 = tf.nn.relu(self.conv_proposal_5)
self.weight_dacay += conv_proposal_3_wd + conv_proposal_4_wd + conv_proposal_5_wd
# Concatrate
self.relu_proposal_all = tf.concat( [self.relu_proposal_3, self.relu_proposal_4, self.relu_proposal_5],3)
# RPN_TEST_6(>=7)
self.conv_cls_score, conv_cls_wd = self.conv_layer_new(self.relu_proposal_all, 'conv_cls_score',
kernel_size=[1, 1], out_channel=18, stddev=0.01)
self.conv_bbox_pred, conv_bbox_wd = self.conv_layer_new(self.relu_proposal_all, 'conv_bbox_pred',
kernel_size=[1, 1], out_channel=36, stddev=0.01)
self.weight_dacay += conv_cls_wd + conv_bbox_wd
assert self.conv_cls_score.get_shape().as_list()[1:] == [feature_height, feature_width, 18]
assert self.conv_bbox_pred.get_shape().as_list()[1:] == [feature_height, feature_width, 36]
self.cls_score = tf.reshape(self.conv_cls_score, [-1, 2])
self.bbox_pred = tf.reshape(self.conv_bbox_pred, [-1, 4])
self.prob = tf.nn.softmax(self.cls_score, name="prob")
self.cross_entropy = tf.reduce_sum(
tf.nn.softmax_cross_entropy_with_logits(labels=label,
logits=self.cls_score) * label_weight) / tf.reduce_sum(label_weight)
bbox_error = tf.abs(self.bbox_pred - bbox_target)
bbox_loss = 0.5 * bbox_error * bbox_error * tf.cast(bbox_error < 1, tf.float32) + (bbox_error - 0.5) * tf.cast(
bbox_error >= 1, tf.float32)
self.bb_loss = tf.reduce_sum(
tf.reduce_sum(bbox_loss, reduction_indices=[1]) * bbox_loss_weight) / tf.reduce_sum(bbox_loss_weight)
self.loss = self.cross_entropy + 0.0005 * self.weight_dacay + 0.5 * self.bb_loss
self.train_step = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(self.loss)
self.data_dict = None
print('build model finished: %ds' % (time.time() - start_time))
def avg_pool(self, bottom, name):
return tf.nn.avg_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def max_pool(self, bottom, name):
return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def conv_layer(self, bottom, name):
with tf.variable_scope(name):
filt = self.get_conv_filter(name)
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias(name)
bias = tf.nn.bias_add(conv, conv_biases)
relu = tf.nn.relu(bias)
weight_dacay = tf.nn.l2_loss(filt, name='weight_dacay')
return relu, weight_dacay
def conv_layer_const(self, bottom, name):
with tf.variable_scope(name):
filt = self.get_conv_filter_const(name)
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias_const(name)
bias = tf.nn.bias_add(conv, conv_biases)
relu = tf.nn.relu(bias)
return relu
def conv_layer_new(self, bottom, name, kernel_size=[3, 3], out_channel=512, stddev=0.01):
with tf.variable_scope(name):
shape = bottom.get_shape().as_list()[-1]
filt = tf.Variable(
tf.random_normal([kernel_size[0], kernel_size[1], shape, out_channel], mean=0.0, stddev=stddev),
name='filter')
conv_biases = tf.Variable(tf.zeros([out_channel]), name='biases')
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
bias = tf.nn.bias_add(conv, conv_biases)
weight_dacay = tf.nn.l2_loss(filt, name='weight_dacay')
return bias, weight_dacay
def get_conv_filter(self, name):
return tf.Variable(self.data_dict[name][0], name='filter')
def get_bias(self, name):
return tf.Variable(self.data_dict[name][1], name='biases')
def get_conv_filter_const(self, name):
return tf.constant(self.data_dict[name][0], name='filter')
def get_bias_const(self, name):
return tf.constant(self.data_dict[name][1], name='biases')
def save(self, save_dir, step=None):
params = {}
for var in tf.trainable_variables():
param_name = var.name.split('/')
if param_name[1] in params.keys():
params[param_name[1]].append(sess.run(var))
else:
params[param_name[1]] = [sess.run(var)]
if step == None:
step = 100000
np.save(save_dir + 'params_' + str(step) + '.npy', params)
def checkFile(fileName):
if os.path.isfile(fileName):
return True
else:
print fileName, 'is not found!'
exit()
def checkDir(fileName, creat=False):
if os.path.isdir(fileName):
if creat:
shutil.rmtree(fileName)
os.mkdir(fileName)
else:
if creat:
os.mkdir(fileName)
else:
print fileName, 'is not found!'
exit()
if __name__ == '__main__':
if len(sys.argv) < 2:
print 'please input GPU index'
exit()
gpuNow = '/gpu:'+sys.argv[1]
print_time = 100
step = 10000
batch_size = 256
saveTime = 2000
modelSaveDir = './models/'
vggModelPath = './models/vgg16.npy'
imageLoadDir = './yourImagePath/'
anoLoadDir = './yourAnnotationPath/'
checkDir(modelSaveDir, False)
checkDir(imageLoadDir, False)
checkDir(anoLoadDir, False)
with tf.device(gpuNow):
sess = tf.Session()
image = tf.placeholder(tf.float32, [1, image_height, image_width, 3])
label = tf.placeholder(tf.float32, [None, 2])
label_weight = tf.placeholder(tf.float32, [None])
bbox_target = tf.placeholder(tf.float32, [None, 4])
bbox_loss_weight = tf.placeholder(tf.float32, [None])
learning_rate = tf.placeholder(tf.float32)
cnn = RPN(vggModelPath)
with tf.name_scope('content_rpn'):
cnn.build(image, label, label_weight, bbox_target, bbox_loss_weight, learning_rate)
sess.run(tf.initialize_all_variables())
for var in tf.trainable_variables():
print var.name, var.get_shape().as_list(), sess.run(tf.nn.l2_loss(var))
cnnData = data_engine.CNNData(batch_size, imageLoadDir, anoLoadDir)
print 'Training Begin'
train_loss = []
train_cross_entropy = []
train_bbox_loss = []
start_time = time.time()
for i in xrange(1, step + 1):
batch = cnnData.prepare_data()
if i <= 7000:
l_r = 0.001
else:
if i <= 9000:
l_r = 0.0001
else:
l_r = 0.00001
(_, train_loss_iter, train_cross_entropy_iter, train_bbox_loss_iter, cls, bbox) = sess.run(
[cnn.train_step, cnn.loss, cnn.cross_entropy, cnn.bb_loss, cnn.cls_score, cnn.bbox_pred],
feed_dict={image: batch[0], label: batch[1], label_weight: batch[2], bbox_target: batch[3],
bbox_loss_weight: batch[4], learning_rate: l_r})
train_loss.append(train_loss_iter)
if i % print_time == 0:
print ' step :', i, 'time :', time.time() - start_time, 'loss :', np.mean(
train_loss), 'l_r :', l_r
train_loss = []
if i% saveTime == 0:
cnn.save(modelSaveDir, i)