-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
80 lines (68 loc) · 2.71 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import cv2
import csv
import numpy as np
import sklearn
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Flatten, Dense, Lambda, Cropping2D, Convolution2D
epochs = 1
# Steering offset for views from left side and right side.
# This appeared to be crucial in the model training.
# Started with 0.2 and the model didn't work until 0.4.
correction_dict = {
0 : 0,
1: 0.4,
2: -0.4
}
ch, row, col = 3, 160, 320
samples = []
with open('data/driving_log.csv') as csvfile:
reader = csv.reader(csvfile)
for line in reader:
samples.append(line)
train_samples, validation_samples = train_test_split(samples, test_size = 0.2)
def generator(samples, batch_size = 32):
num_samples = len(samples)
while 1:
sklearn.utils.shuffle(samples)
for offset in range(0, num_samples, batch_size):
batch_samples = samples[offset : offset + batch_size]
images, angles = [], []
for batch_sample in batch_samples:
for i in range(3):
file_path = './data/IMG/' + batch_sample[i].split('/')[-1]
image = cv2.imread(file_path)
b,g,r = cv2.split(image)
image = cv2.merge([r,g,b])
if image is not None:
angle = float(line[3]) + correction_dict[i]
images.append(image)
angles.append(angle)
images.append(cv2.flip(image, 1))
angles.append(angle * -1.0)
X_train = np.array(images)
y_train = np.array(angles)
yield sklearn.utils.shuffle(X_train, y_train)
train_generator = generator(train_samples, batch_size = 32)
validation_generator = generator(validation_samples, batch_size = 32)
model = Sequential()
model.add(Lambda(lambda x: (x / 255.0) - 0.5,
input_shape=(row, col, ch)))
model.add(Cropping2D(cropping=((70,25), (0,0))))
model.add(Convolution2D(24,5,5,subsample=(2,2),activation="relu"))
model.add(Convolution2D(36,5,5,subsample=(2,2),activation="relu"))
model.add(Convolution2D(48,5,5,subsample=(2,2),activation="relu"))
model.add(Convolution2D(64,3,3,activation="relu"))
model.add(Convolution2D(64,3,3,activation="relu"))
model.add(Flatten())
model.add(Dense(100))
model.add(Dense(50))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
model.fit_generator(train_generator,
samples_per_epoch = len(train_samples) * 6,
validation_data = validation_generator,
nb_val_samples = len(validation_samples),
nb_epoch = epochs)
model.save('model.h5')