-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdistribution_classes.py
211 lines (175 loc) · 5.76 KB
/
distribution_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
'''
Distribution classes
To help with controlling sampling `numpy` distributions are packaged up into
classes that allow easy control of random numbers.
**Distributions included:**
* Exponential
* Log Normal
* Bernoulli
* Normal
* Uniform
'''
import numpy as np
import math
class Exponential:
'''
Convenience class for the exponential distribution.
packages up distribution parameters, seed and random generator.
'''
def __init__(self, mean, random_seed=None):
'''
Constructor
Params:
------
mean: float
The mean of the exponential distribution
random_seed: int, optional (default=None)
A random seed to reproduce samples. If set to none then a unique
sample is created.
'''
self.rng = np.random.default_rng(seed=random_seed)
self.mean = mean
def sample(self, size=None):
'''
Generate a sample from the exponential distribution
Params:
-------
size: int, optional (default=None)
the number of samples to return. If size=None then a single
sample is returned.
'''
return self.rng.exponential(self.mean, size=size)
class Bernoulli:
'''
Convenience class for the Bernoulli distribution.
packages up distribution parameters, seed and random generator.
'''
def __init__(self, p, random_seed=None):
'''
Constructor
Params:
------
p: float
probability of drawing a 1
random_seed: int, optional (default=None)
A random seed to reproduce samples. If set to none then a unique
sample is created.
'''
self.rng = np.random.default_rng(seed=random_seed)
self.p = p
def sample(self, size=None):
'''
Generate a sample from the exponential distribution
Params:
-------
size: int, optional (default=None)
the number of samples to return. If size=None then a single
sample is returned.
'''
return self.rng.binomial(n=1, p=self.p, size=size)
class Lognormal:
"""
Encapsulates a lognormal distirbution
"""
def __init__(self, mean, stdev, random_seed=None):
"""
Params:
-------
mean: float
mean of the lognormal distribution
stdev: float
standard dev of the lognormal distribution
random_seed: int, optional (default=None)
Random seed to control sampling
"""
self.rng = np.random.default_rng(seed=random_seed)
mu, sigma = self.normal_moments_from_lognormal(mean, stdev**2)
self.mu = mu
self.sigma = sigma
def normal_moments_from_lognormal(self, m, v):
'''
Returns mu and sigma of normal distribution
underlying a lognormal with mean m and variance v
source: https://blogs.sas.com/content/iml/2014/06/04/simulate-lognormal
-data-with-specified-mean-and-variance.html
Params:
-------
m: float
mean of lognormal distribution
v: float
variance of lognormal distribution
Returns:
-------
(float, float)
'''
phi = math.sqrt(v + m**2)
mu = math.log(m**2/phi)
sigma = math.sqrt(math.log(phi**2/m**2))
return mu, sigma
def sample(self):
"""
Sample from the normal distribution
"""
return self.rng.lognormal(self.mu, self.sigma)
class Normal:
'''
Convenience class for the normal distribution.
packages up distribution parameters, seed and random generator.
'''
def __init__(self, mean, sigma, random_seed=None):
'''
Constructor
Params:
------
mean: float
The mean of the normal distribution
sigma: float
The stdev of the normal distribution
random_seed: int, optional (default=None)
A random seed to reproduce samples. If set to none then a unique
sample is created.
'''
self.rng = np.random.default_rng(seed=random_seed)
self.mean = mean
self.sigma = sigma
def sample(self, size=None):
'''
Generate a sample from the normal distribution
Params:
-------
size: int, optional (default=None)
the number of samples to return. If size=None then a single
sample is returned.
'''
return self.rng.normal(self.mean, self.sigma, size=size)
class Uniform():
'''
Convenience class for the Uniform distribution.
packages up distribution parameters, seed and random generator.
'''
def __init__(self, low, high, random_seed=None):
'''
Constructor
Params:
------
low: float
lower range of the uniform
high: float
upper range of the uniform
random_seed: int, optional (default=None)
A random seed to reproduce samples. If set to none then a unique
sample is created.
'''
self.rand = np.random.default_rng(seed=random_seed)
self.low = low
self.high = high
def sample(self, size=None):
'''
Generate a sample from the uniform distribution
Params:
-------
size: int, optional (default=None)
the number of samples to return. If size=None then a single
sample is returned.
'''
return self.rand.uniform(low=self.low, high=self.high, size=size)