forked from zk-phi/scad-preview
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinal-util.el
202 lines (191 loc) · 6.3 KB
/
linal-util.el
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
;;; linal-util.el --- Linear algebra functions for scad-preview mode
;;; Commentary:
;; Copyright (C) 2013-2015 zk_phi
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2 of the License, or
;; (at your option) any later version.
;;
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
;; Author: hooger
;;; Code:
(defun vector_norm (vec)
"Calculates Euclidian-norm of an arbitrary length vector VEC."
(sqrt (apply '+ (mapcar (lambda (x) (* x x)) vec)))
)
(defun vector_normal (vec)
"Returnsed a normal vector, pointing to the same direction as VEC."
(let (
(vec_n (float (vector_norm vec)))
)
(mapcar (lambda (x) (/ x vec_n)) vec)
)
)
(defun rotation (ang vec &optional deg)
"Rotation matrix definition with Rodrigues formula.
\(Murray et. al, A Mathematical Introduction to Robotic Manipulation pp. 29\)
Rotation vector with ANG around VEC. ANG is in degree if DEG is non-nil."
(when (= (length vec) 3)
(let (
(ang
(if deg
(* pi (/ ang (float 180)))
ang
))
)
(let (
(o (vector_normal vec))
(vt (- 1 (cos ang)))
(st (sin ang))
(ct (cos ang))
)
`(,(+ (* vt (* (nth 0 o) (nth 0 o))) (* 1 ct))
,(- (* vt (* (nth 0 o) (nth 1 o))) (* (nth 2 o) st))
,(+ (* vt (* (nth 0 o) (nth 2 o))) (* (nth 1 o) st))
,(+ (* vt (* (nth 1 o) (nth 0 o))) (* (nth 2 o) st))
,(+ (* vt (* (nth 1 o) (nth 1 o))) (* 1 ct))
,(- (* vt (* (nth 1 o) (nth 2 o))) (* (nth 0 o) st))
,(- (* vt (* (nth 2 o) (nth 0 o))) (* (nth 1 o) st))
,(+ (* vt (* (nth 2 o) (nth 1 o))) (* (nth 0 o) st))
,(+ (* vt (* (nth 2 o) (nth 2 o))) (* 1 ct))
)))))
(defun matrixmul3x3 (a b)
"Multiplying two 3x3 matrices.
The two matrices are A and B"
(when (and (= (length a) 9) (= (length b) 9) )
`(
,(+ (* (nth 0 a) (nth 0 b)) (* (nth 1 a) (nth 3 b)) (* (nth 2 a) (nth 6 b)))
,(+ (* (nth 0 a) (nth 1 b)) (* (nth 1 a) (nth 4 b)) (* (nth 2 a) (nth 7 b)))
,(+ (* (nth 0 a) (nth 2 b)) (* (nth 1 a) (nth 5 b)) (* (nth 2 a) (nth 8 b)))
,(+ (* (nth 3 a) (nth 0 b)) (* (nth 4 a) (nth 3 b)) (* (nth 5 a) (nth 6 b)))
,(+ (* (nth 3 a) (nth 1 b)) (* (nth 4 a) (nth 4 b)) (* (nth 5 a) (nth 7 b)))
,(+ (* (nth 3 a) (nth 2 b)) (* (nth 4 a) (nth 5 b)) (* (nth 5 a) (nth 8 b)))
,(+ (* (nth 6 a) (nth 0 b)) (* (nth 7 a) (nth 3 b)) (* (nth 8 a) (nth 6 b)))
,(+ (* (nth 6 a) (nth 1 b)) (* (nth 7 a) (nth 4 b)) (* (nth 8 a) (nth 7 b)))
,(+ (* (nth 6 a) (nth 2 b)) (* (nth 7 a) (nth 5 b)) (* (nth 8 a) (nth 8 b)))
)
)
)
(defun matrixvectormul3x1 (mx v)
"Multiplying 3x3 matrix with 3x1 vector.
MX is the matrix, V is the vector"
(when (and (= (length mx) 9) (= (length v) 3) )
`(
,(+ (* (nth 0 mx) (nth 0 v)) (* (nth 1 mx) (nth 1 v)) (* (nth 2 mx) (nth 2 v)))
,(+ (* (nth 3 mx) (nth 0 v)) (* (nth 4 mx) (nth 1 v)) (* (nth 5 mx) (nth 2 v)))
,(+ (* (nth 6 mx) (nth 0 v)) (* (nth 7 mx) (nth 1 v)) (* (nth 8 mx) (nth 2 v)))
)
)
)
(defun rot2euler (r &optional deg)
"Calculate Euler angles from a rotation matrix by Gregory G. Slabaugh.
Rotation order is X, Y, Z
R is the rotation matrix
if non-nil DEG is result is converted to degree"
(when (= (length r) 9)
(let
(
(x1 0)
(x2 0)
(y1 0)
(y2 0)
(z1 0)
(z2 0)
)
(if (= (abs (nth 6 r)) 1)
(progn
(setq z1 0)
(setq z2 0)
(if (= (nth 6 r) -1)
(progn
(setq y1 (/ pi 2.0))
(setq y2 (/ pi 2.0))
(setq x1 (+ y1 (atan (nth 1 r) (nth 2 r))))
(setq x2 (+ y2 (atan (nth 1 r) (nth 2 r))))
)
(progn
(setq y1 (/ pi -2.0))
(setq y2 (/ pi -2.0))
(setq x1 (- (atan (- (nth 1 r)) (- (nth 2 r))) y1))
(setq x2 (- (atan (- (nth 1 r)) (- (nth 2 r))) y2))
)
)
)
(progn
(setq y1 (- (asin (nth 6 r))))
(setq y2 (- pi y1))
(setq x1 (atan (/ (nth 7 r) (cos y1)) (/ (nth 8 r) (cos y1))))
(setq x2 (atan (/ (nth 7 r) (cos y2)) (/ (nth 8 r) (cos y2))))
(setq z1 (atan (/ (nth 3 r) (cos y1)) (/ (nth 0 r) (cos y1))))
(setq z2 (atan (/ (nth 3 r) (cos y2)) (/ (nth 0 r) (cos y2))))
)
)
(if deg
((lambda (ls) (list (butlast ls 3) (nthcdr 3 ls))) (mapcar (lambda (ang) (* 180 (/ ang (float pi)))) (list x1 y1 z1 x2 y2 z2)))
`(,(list x1 y1 z1) ,(list x2 y2 z2))
)
)
)
)
(defun euler2rot (eulerls &optional deg)
"Calculate rotation matrix from Euler angles.
EULERLS is the list of Euler angles,
if non-nil DEG is result is converted to degree"
(matrixmul3x3 (matrixmul3x3 (rotation (nth 2 eulerls) '(0 0 1) deg) (rotation (nth 1 eulerls) '(0 1 0) deg)) (rotation (nth 0 eulerls) '(1 0 0) deg))
)
(defun det3x3 (mat)
"Calculate the determinant of 3x3 matrix MAT."
(when (= (length mat) 9)
(+ (- 0 (* (nth 2 mat) (nth 4 mat) (nth 6 mat)))
(* (nth 1 mat) (nth 5 mat) (nth 6 mat))
(* (nth 2 mat) (nth 3 mat) (nth 7 mat))
(- 0 (* (nth 0 mat) (nth 5 mat) (nth 7 mat)))
(- 0 (* (nth 1 mat) (nth 3 mat) (nth 8 mat)))
(* (nth 0 mat) (nth 4 mat) (nth 8 mat))
)
)
)
(defun invert3x3 (mat)
"Invert 3x3 matrix MAT."
(when (= (length mat) 9)
(let
(
(det (det3x3 mat))
(a (float (nth 0 mat)))
(b (float (nth 1 mat)))
(c (float (nth 2 mat)))
(d (float (nth 3 mat)))
(e (float (nth 4 mat)))
(f (float (nth 5 mat)))
(g (float (nth 6 mat)))
(h (float (nth 7 mat)))
(i (float (nth 8 mat)))
)
(if (not(= det 0))
(let
(
(A (/ ( - (* e i) (* f h)) det))
(D (/ ( - (* c h) (* b i)) det))
(G (/ ( - (* b f) (* c e)) det))
(B (/ ( - (* f g) (* d i)) det))
(E (/ ( - (* a i) (* c g)) det))
(H (/ ( - (* c d) (* a f)) det))
(C (/ ( - (* d h) (* e g)) det))
(F (/ ( - (* b g) (* a h)) det))
(I (/ ( - (* a e) (* b d)) det))
)
(list A D G B E H C F I)
)
)
)
)
)
(provide 'linal-util)
;;; linal-util ends here