-
Notifications
You must be signed in to change notification settings - Fork 1
/
uiqm.py
239 lines (219 loc) · 7.15 KB
/
uiqm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import cv2
import numpy as np
from skimage import data, color
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal as sig
import math
from skimage.util import img_as_ubyte, img_as_float64
from skimage.color import rgb2gray
from skimage.color import rgb2hsv
import matplotlib.pyplot as plt
from skimage.io import imread
import warnings
warnings.filterwarnings('ignore')
import skimage
from numpy import load
from numpy import expand_dims
import matplotlib
from matplotlib import pyplot
import sys
import PIL
from PIL import Image
import pandas as pd
import numpy as np
import scipy.misc
import imageio
import glob
import os
import cv2
import sewar
import math
from math import log2, log10
from scipy import ndimage
import skimage
from skimage import color
from skimage.metrics import structural_similarity
def mu_a(x, alpha_L=0.1, alpha_R=0.1):
"""
Calculates the asymetric alpha-trimmed mean
"""
# sort pixels by intensity - for clipping
x = sorted(x)
# get number of pixels
K = len(x)
# calculate T alpha L and T alpha R
T_a_L = math.ceil(alpha_L*K)
T_a_R = math.floor(alpha_R*K)
# calculate mu_alpha weight
weight = (1/(K-T_a_L-T_a_R))
# loop through flattened image starting at T_a_L+1 and ending at K-T_a_R
s = int(T_a_L+1)
e = int(K-T_a_R)
val = sum(x[s:e])
val = weight*val
return val
def s_a(x, mu):
val = 0
for pixel in x:
val += math.pow((pixel-mu), 2)
return val/len(x)
def _uicm(x):
R = x[:,:,0].flatten()
G = x[:,:,1].flatten()
B = x[:,:,2].flatten()
RG = R-G
YB = ((R+G)/2)-B
mu_a_RG = mu_a(RG)
mu_a_YB = mu_a(YB)
s_a_RG = s_a(RG, mu_a_RG)
s_a_YB = s_a(YB, mu_a_YB)
l = math.sqrt( (math.pow(mu_a_RG,2)+math.pow(mu_a_YB,2)) )
r = math.sqrt(s_a_RG+s_a_YB)
return (-0.0268*l)+(0.1586*r)
def sobel(x):
dx = ndimage.sobel(x,0)
dy = ndimage.sobel(x,1)
mag = np.hypot(dx, dy)
mag *= 255.0 / np.max(mag)
return mag
def eme(x, window_size):
"""
Enhancement measure estimation
x.shape[0] = height
x.shape[1] = width
"""
# if 4 blocks, then 2x2...etc.
k1 = x.shape[1]/window_size
k2 = x.shape[0]/window_size
# weight
w = 2./(k1*k2)
blocksize_x = window_size
blocksize_y = window_size
# make sure image is divisible by window_size - doesn't matter if we cut out some pixels
x = x[:int(blocksize_y*k2), :int(blocksize_x*k1)]
val = 0
for l in range(int(k1)):
for k in range(int(k2)):
block = x[k*window_size:window_size*(k+1), l*window_size:window_size*(l+1)]
max_ = np.max(block)
min_ = np.min(block)
# bound checks, can't do log(0)
if min_ == 0.0: val += 0
elif max_ == 0.0: val += 0
else: val += math.log(max_/min_)
return w*val
def _uism(x):
"""
Underwater Image Sharpness Measure
"""
# get image channels
R = x[:,:,0]
G = x[:,:,1]
B = x[:,:,2]
# first apply Sobel edge detector to each RGB component
Rs = sobel(R)
Gs = sobel(G)
Bs = sobel(B)
# multiply the edges detected for each channel by the channel itself
R_edge_map = np.multiply(Rs, R)
G_edge_map = np.multiply(Gs, G)
B_edge_map = np.multiply(Bs, B)
# get eme for each channel
r_eme = eme(R_edge_map, 10)
g_eme = eme(G_edge_map, 10)
b_eme = eme(B_edge_map, 10)
# coefficients
lambda_r = 0.299
lambda_g = 0.587
lambda_b = 0.144
return (lambda_r*r_eme) + (lambda_g*g_eme) + (lambda_b*b_eme)
def plip_g(x,mu=1026.0):
return mu-x
def plip_theta(g1, g2, k):
g1 = plip_g(g1)
g2 = plip_g(g2)
return k*((g1-g2)/(k-g2))
def plip_cross(g1, g2, gamma):
g1 = plip_g(g1)
g2 = plip_g(g2)
return g1+g2-((g1*g2)/(gamma))
def plip_diag(c, g, gamma):
g = plip_g(g)
return gamma - (gamma * math.pow((1 - (g/gamma) ), c) )
def plip_multiplication(g1, g2):
return plip_phiInverse(plip_phi(g1) * plip_phi(g2))
#return plip_phiInverse(plip_phi(plip_g(g1)) * plip_phi(plip_g(g2)))
def plip_phiInverse(g):
plip_lambda = 1026.0
plip_beta = 1.0
return plip_lambda * (1 - math.pow(math.exp(-g / plip_lambda), 1 / plip_beta));
def plip_phi(g):
plip_lambda = 1026.0
plip_beta = 1.0
return -plip_lambda * math.pow(math.log(1 - g / plip_lambda), plip_beta)
def _uiconm(x, window_size):
plip_lambda = 1026.0
plip_gamma = 1026.0
plip_beta = 1.0
plip_mu = 1026.0
plip_k = 1026.0
# if 4 blocks, then 2x2...etc.
k1 = x.shape[1]/window_size
k2 = x.shape[0]/window_size
# weight
w = -1./(k1*k2)
blocksize_x = window_size
blocksize_y = window_size
# make sure image is divisible by window_size - doesn't matter if we cut out some pixels
x = x[:int(blocksize_y*k2), :int(blocksize_x*k1)]
# entropy scale - higher helps with randomness
alpha = 1
val = 0
for l in range(int(k1)):
for k in range(int(k2)):
block = x[k*window_size:window_size*(k+1), l*window_size:window_size*(l+1), :]
max_ = np.max(block)
min_ = np.min(block)
top = max_-min_
bot = max_+min_
if math.isnan(top) or math.isnan(bot) or bot == 0.0 or top == 0.0: val += 0.0
else: val += alpha*math.pow((top/bot),alpha) * math.log(top/bot)
#try: val += plip_multiplication((top/bot),math.log(top/bot))
return w*val
##########################################################################################
def getUIQM(x):
"""
Function to return UIQM to be called from other programs
x: image
"""
x = x.astype(np.float32)
### from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7300447
#c1 = 0.4680; c2 = 0.2745; c3 = 0.2576
### from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7300447
c1 = 0.0282; c2 = 0.2953; c3 = 3.5753
uicm = _uicm(x)
uism = _uism(x)
uiconm = _uiconm(x, 10)
uiqm = (c1*uicm) + (c2*uism) + (c3*uiconm)
return uiqm
def getUCIQE(rgb_in):
# calculate Chroma
rgb_in = cv2.normalize(rgb_in, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
(l,a,b)=cv2.split(rgb_in)
Chroma = np.sqrt(a*a + b*b)
StdVarianceChroma = np.std(np.reshape(Chroma[:,:],(-1,1)))
hsv = skimage.color.rgb2hsv(rgb_in)
Saturation = hsv[:,:,2]
MeanSaturation = np.mean(np.reshape(Saturation[:,:],(-1,1)))
ContrastLuminance = max(np.reshape(l[:,:],(-1,1))) - min(np.reshape(l[:,:],(-1,1)))
UCIQE = 0.4680 * StdVarianceChroma + 0.2745 * ContrastLuminance + 0.2576 * MeanSaturation
return float(UCIQE)
def improve_contrast_image_using_clahe(bgr_image):
hsv = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2HSV)
hsv_planes = cv2.split(hsv)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
hsv_planes[2] = clahe.apply(hsv_planes[2])
hsv = cv2.merge(hsv_planes)
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)