forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspaces-more-morphisms.tex
8672 lines (7776 loc) · 307 KB
/
spaces-more-morphisms.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{More on Morphisms of Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we continue our study of properties of morphisms of algebraic
spaces. A fundamental reference is \cite{Kn}.
\section{Conventions}
\label{section-conventions}
\noindent
The standing assumption is that all schemes are contained in
a big fppf site $\Sch_{fppf}$. And all rings $A$ considered
have the property that $\Spec(A)$ is (isomorphic) to an
object of this big site.
\medskip\noindent
Let $S$ be a scheme and let $X$ be an algebraic space over $S$.
In this chapter and the following we will write $X \times_S X$
for the product of $X$ with itself (in the category of algebraic
spaces over $S$), instead of $X \times X$.
\section{Radicial morphisms}
\label{section-radicial}
\noindent
It turns out that a radicial morphism is not the same thing as a
universally injective morphism, contrary to what happens with
morphisms of schemes. In fact it is a bit stronger.
\begin{definition}
\label{definition-radicial}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. We say $f$ is {\it radicial} if for any morphism
$\Spec(K) \to Y$ where $K$ is a field the reduction
$(\Spec(K) \times_Y X)_{red}$ is either empty or
representable by the spectrum of a purely inseparable field extension of $K$.
\end{definition}
\begin{lemma}
\label{lemma-radicial-implies-universally-injective}
A radicial morphism of algebraic spaces is universally injective.
\end{lemma}
\begin{proof}
Let $S$ be a scheme. Let $f : X \to Y$ be a radicial
morphism of algebraic spaces over $S$.
It is clear from the definition that given a morphism
$\Spec(K) \to Y$ there is at most one lift of this morphism
to a morphism into $X$. Hence we conclude that $f$ is universally
injective by
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-universally-injective}.
\end{proof}
\begin{example}
\label{example-universally-injective-not-radicial}
It is no longer true that universally injective is equivalent to radicial.
For example the morphism
$$
X = [\Spec(\overline{\mathbf{Q}})/
\text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})]
\longrightarrow
S = \Spec(\mathbf{Q})
$$
of
Spaces, Example \ref{spaces-example-Qbar}
is universally injective, but is not radicial in the sense above.
\end{example}
\noindent
Nonetheless it is often the case that the reverse implication holds.
\begin{lemma}
\label{lemma-when-universally-injective-radicial}
Let $S$ be a scheme. Let $f : X \to Y$ be a universally injective
morphism of algebraic spaces over $S$.
\begin{enumerate}
\item If $f$ is decent then $f$ is radicial.
\item If $f$ is quasi-separated then $f$ is radicial.
\item If $f$ is locally separated then $f$ is radicial.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $\mathcal{P}$ be a property of morphisms of algebraic spaces
which is stable under base change and composition and holds for
closed immersions. Assume $f : X \to Y$ has $\mathcal{P}$ and
is universally injective. Then, in the situation of
Definition \ref{definition-radicial}
the morphism $(\Spec(K) \times_Y X)_{red} \to \Spec(K)$
is universally injective and has $\mathcal{P}$. This reduces the
problem of proving
$$
\mathcal{P} + \text{universally injective}
\Rightarrow
\text{radicial}
$$
to the problem of proving that any nonempty reduced algebraic space $X$
over field whose structure morphism $X \to \Spec(K)$ is universally
injective and $\mathcal{P}$ is representable by the spectrum of a field.
Namely, then $X \to \Spec(K)$ will be a morphism of schemes and
we conclude by the equivalence of radicial and universally injective for
morphisms of schemes, see
Morphisms, Lemma \ref{morphisms-lemma-universally-injective}.
\medskip\noindent
Let us prove (1). Assume $f$ is decent and universally injective. By
Decent Spaces,
Lemmas \ref{decent-spaces-lemma-base-change-relative-conditions},
\ref{decent-spaces-lemma-composition-relative-conditions}, and
\ref{decent-spaces-lemma-properties-trivial-implications}
(to see that an immersion is decent) we see that the discussion in
the first paragraph applies.
Let $X$ be a nonempty decent reduced algebraic space
universally injective over a field $K$. In particular we see that $|X|$
is a singleton. By
Decent Spaces, Lemma \ref{decent-spaces-lemma-when-field}
we conclude that $X \cong \Spec(L)$ for some extension
$K \subset L$ as desired.
\medskip\noindent
A quasi-separated morphism is decent, see
Decent Spaces,
Lemma \ref{decent-spaces-lemma-properties-trivial-implications}.
Hence (1) implies (2).
\medskip\noindent
Let us prove (3).
Recall that the separation axioms are stable under base change
and composition and that closed immersions are separated, see
Morphisms of Spaces,
Lemmas \ref{spaces-morphisms-lemma-base-change-separated},
\ref{spaces-morphisms-lemma-composition-separated}, and
\ref{spaces-morphisms-lemma-immersions-monomorphisms}.
Thus the discussion in the first paragraph of the proof applies.
Let $X$ be a reduced algebraic space universally injective and
locally separated over a field $K$.
In particular $|X|$ is a singleton hence $X$ is quasi-compact, see
Properties of Spaces, Lemma \ref{spaces-properties-lemma-quasi-compact-space}.
We can find a surjective \'etale morphism $U \to X$ with $U$ affine, see
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-quasi-compact-affine-cover}.
Consider the morphism of schemes
$$
j :
U \times_X U
\longrightarrow
U \times_{\Spec(K)} U
$$
As $X \to \Spec(K)$ is universally injective $j$ is surjective,
and as $X \to \Spec(K)$ is locally separated $j$ is an immersion.
A surjective immersion is a closed immersion, see
Schemes, Lemma \ref{schemes-lemma-immersion-when-closed}.
Hence $R = U \times_X U$ is affine as a closed subscheme of an affine scheme.
In particular $R$ is quasi-compact.
It follows that $X = U/R$ is quasi-separated, and the result follows from (2).
\end{proof}
\begin{remark}
\label{remark-weakly-radicial}
Let $X \to Y$ be a morphism of algebraic spaces.
For some applications (of radicial morphisms)
it is enough to require that for every
$\Spec(K) \to Y$ where $K$ is a field
\begin{enumerate}
\item the space $|\Spec(K) \times_Y X|$ is a singleton,
\item there exists a monomorphism
$\Spec(L) \to \Spec(K) \times_Y X$, and
\item $K \subset L$ is purely inseparable.
\end{enumerate}
If needed later we will may call such a morphism {\it weakly radicial}.
For example if $X \to Y$ is a surjective weakly radicial morphism
then $X(k) \to Y(k)$ is surjective for every algebraically closed field $k$.
Note that the base change
$X_{\overline{\mathbf{Q}}} \to \Spec(\overline{\mathbf{Q}})$
of the morphism in
Example \ref{example-universally-injective-not-radicial}
is weakly radicial, but not radicial. The analogue of
Lemma \ref{lemma-when-universally-injective-radicial}
is that if $X \to Y$ has property ($\beta$) and is universally
injective, then it is weakly radicial (proof omitted).
\end{remark}
\begin{lemma}
\label{lemma-check-universally-injective}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic
spaces over $S$. Assume
\begin{enumerate}
\item $f$ is locally of finite type,
\item for every \'etale morphism $V \to Y$ the map $|X \times_Y V| \to |V|$
is injective.
\end{enumerate}
Then $f$ is universally injective.
\end{lemma}
\begin{proof}
The question is \'etale local on $Y$ by
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-universally-injective-local}.
Hence we may assume that $Y$ is a scheme.
Then $Y$ is in particular decent and by Decent Spaces, Lemma
\ref{decent-spaces-lemma-conditions-on-point-in-fibre-and-qf}
we see that $f$ is locally quasi-finite.
Let $y \in Y$ be a point and let $X_y$ be the scheme theoretic
fibre. Assume $X_y$ is not empty. By Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-locally-quasi-finite-over-field}
we see that $X_y$ is a scheme which is locally quasi-finite over
$\kappa(y)$. Since $|X_y| \subset |X|$ is the fibre of $|X| \to |Y|$
over $y$ we see that $X_y$ has a unique point $x$. The same is true
for $X_y \times_{\Spec(\kappa(y))} \Spec(k)$ for any
finite separable extension $\kappa(y) \subset k$
because we can realize $k$ as the residue field at a point
lying over $y$ in an \'etale scheme over $Y$, see
see More on Morphisms, Lemma
\ref{more-morphisms-lemma-realize-prescribed-residue-field-extension-etale}.
Thus $X_y$ is geometrically connected, see
Varieties, Lemma \ref{varieties-lemma-characterize-geometrically-disconnected}.
This implies that the finite extension $\kappa(y) \subset \kappa(x)$
is purely inseparable.
\medskip\noindent
We conclude (in the case that $Y$ is a scheme)
that for every $y \in Y$ either the fibre $X_y$ is empty,
or $(X_y)_{red} = \Spec(\kappa(x))$ with
$\kappa(y) \subset \kappa(x)$ purely inseparable.
Hence $f$ is radicial (some details omitted), whence universally injective by
Lemma \ref{lemma-radicial-implies-universally-injective}.
\end{proof}
\section{Conormal sheaf of an immersion}
\label{section-conormal-sheaf}
\noindent
Let $S$ be a scheme. Let $i : Z \to X$ be a closed immersion of algebraic
spaces over $S$. Let $\mathcal{I} \subset \mathcal{O}_X$ be the corresponding
quasi-coherent sheaf of ideals, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-closed-immersion-ideals}.
Consider the short exact sequence
$$
0 \to \mathcal{I}^2 \to \mathcal{I} \to \mathcal{I}/\mathcal{I}^2 \to 0
$$
of quasi-coherent sheaves on $X$. Since the sheaf $\mathcal{I}/\mathcal{I}^2$
is annihilated by $\mathcal{I}$ it corresponds to a sheaf on $Z$ by
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-i-star-equivalence}.
This quasi-coherent $\mathcal{O}_Z$-module is the
{\it conormal sheaf of $Z$ in $X$} and is often denoted
$\mathcal{I}/\mathcal{I}^2$ by the abuse of notation mentioned in
Morphisms of Spaces,
Section \ref{spaces-morphisms-section-closed-immersions-quasi-coherent}.
\medskip\noindent
In case $i : Z \to X$ is a (locally closed) immersion we define the
conormal sheaf of $i$ as the conormal sheaf of the closed
immersion $i : Z \to X \setminus \partial Z$, see
Morphisms of Spaces, Remark \ref{spaces-morphisms-remark-immersion}.
It is often denoted
$\mathcal{I}/\mathcal{I}^2$ where $\mathcal{I}$ is the ideal sheaf
of the closed immersion $i : Z \to X \setminus \partial Z$.
\begin{definition}
\label{definition-conormal-sheaf}
Let $i : Z \to X$ be an immersion. The {\it conormal sheaf
$\mathcal{C}_{Z/X}$ of $Z$ in $X$} or the {\it conormal sheaf of $i$}
is the quasi-coherent $\mathcal{O}_Z$-module $\mathcal{I}/\mathcal{I}^2$
described above.
\end{definition}
\noindent
In \cite[IV Definition 16.1.2]{EGA} this sheaf is denoted
$\mathcal{N}_{Z/X}$. We will not follow this convention since we would
like to reserve the notation $\mathcal{N}_{Z/X}$
for the {\it normal sheaf of the immersion}. It is defined as
$$
\mathcal{N}_{Z/X} =
\SheafHom_{\mathcal{O}_Z}(\mathcal{C}_{Z/X}, \mathcal{O}_Z) =
\SheafHom_{\mathcal{O}_Z}(\mathcal{I}/\mathcal{I}^2, \mathcal{O}_Z)
$$
provided the conormal sheaf is of finite presentation (otherwise the
normal sheaf may not even be quasi-coherent). We will come back to the
normal sheaf later (insert future reference here).
\begin{lemma}
\label{lemma-etale-conormal}
Let $S$ be a scheme. Let $i : Z \to X$ be an immersion.
Let $\varphi : U \to X$ be an \'etale morphism where $U$ is a scheme.
Set $Z_U = U \times_X Z$ which is a locally closed subscheme of $U$.
Then
$$
\mathcal{C}_{Z/X}|_{Z_U} = \mathcal{C}_{Z_U/U}
$$
canonically and functorially in $U$.
\end{lemma}
\begin{proof}
Let $T \subset X$ be a closed subspace such that $i$ defines a closed
immersion into $X \setminus T$.
Let $\mathcal{I}$ be the quasi-coherent sheaf of ideals on
$X \setminus T$ defining $Z$. Then the lemma just states that
$\mathcal{I}|_{U \setminus \varphi^{-1}(T)}$ is the sheaf of ideals of
the immersion $Z_U \to U \setminus \varphi^{-1}(T)$.
This is clear from the construction of $\mathcal{I}$ in
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-closed-immersion-ideals}.
\end{proof}
\begin{lemma}
\label{lemma-conormal-functorial}
Let $S$ be a scheme. Let
$$
\xymatrix{
Z \ar[r]_i \ar[d]_f & X \ar[d]^g \\
Z' \ar[r]^{i'} & X'
}
$$
be a commutative diagram of algebraic spaces over $S$.
Assume $i$, $i'$ immersions. There is a canonical map
of $\mathcal{O}_Z$-modules
$$
f^*\mathcal{C}_{Z'/X'}
\longrightarrow
\mathcal{C}_{Z/X}
$$
\end{lemma}
\begin{proof}
First find open subspaces $U' \subset X'$ and $U \subset X$ such that
$g(U) \subset U'$ and such that $i(Z) \subset U$ and $i(Z') \subset U'$
are closed (proof existence omitted). Replacing $X$ by $U$ and $X'$ by
$U'$ we may assume that $i$ and $i'$ are closed immersions.
Let $\mathcal{I}' \subset \mathcal{O}_{X'}$ and
$\mathcal{I} \subset \mathcal{O}_X$ be the quasi-coherent sheaves of
ideals associated to $i'$ and $i$, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-closed-immersion-ideals}.
Consider the composition
$$
g^{-1}\mathcal{I}' \to g^{-1}\mathcal{O}_{X'}
\xrightarrow{g^\sharp} \mathcal{O}_X \to
\mathcal{O}_X/\mathcal{I} = i_*\mathcal{O}_Z
$$
Since $g(i(Z)) \subset Z'$ we conclude this composition is zero (see
statement on factorizations in
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-closed-immersion-ideals}).
Thus we obtain a commutative diagram
$$
\xymatrix{
0 \ar[r] &
\mathcal{I} \ar[r] &
\mathcal{O}_X \ar[r] &
i_*\mathcal{O}_Z \ar[r] &
0 \\
0 \ar[r] &
g^{-1}\mathcal{I}' \ar[r] \ar[u] &
g^{-1}\mathcal{O}_{X'} \ar[r] \ar[u] &
g^{-1}i'_*\mathcal{O}_{Z'} \ar[r] \ar[u] &
0
}
$$
The lower row is exact since $g^{-1}$ is an exact functor.
By exactness we also see that
$(g^{-1}\mathcal{I}')^2 = g^{-1}((\mathcal{I}')^2)$.
Hence the diagram induces a map
$g^{-1}(\mathcal{I}'/(\mathcal{I}')^2) \to \mathcal{I}/\mathcal{I}^2$.
Pulling back (using $i^{-1}$ for example) to $Z$ we obtain
$i^{-1}g^{-1}(\mathcal{I}'/(\mathcal{I}')^2) \to \mathcal{C}_{Z/X}$.
Since $i^{-1}g^{-1} = f^{-1}(i')^{-1}$ this gives a map
$f^{-1}\mathcal{C}_{Z'/X'} \to \mathcal{C}_{Z/X}$, which induces
the desired map.
\end{proof}
\begin{lemma}
\label{lemma-conormal-functorial-more}
Let $S$ be a scheme. The conormal sheaf of
Definition \ref{definition-conormal-sheaf}, and its functoriality of
Lemma \ref{lemma-conormal-functorial}
satisfy the following properties:
\begin{enumerate}
\item If $Z \to X$ is an immersion of schemes over $S$, then the conormal
sheaf agrees with the one from
Morphisms, Definition \ref{morphisms-definition-conormal-sheaf}.
\item If in
Lemma \ref{lemma-conormal-functorial}
all the spaces are schemes, then the map
$f^*\mathcal{C}_{Z'/X'} \to \mathcal{C}_{Z/X}$ is the same
as the one constructed in
Morphisms, Lemma \ref{morphisms-lemma-conormal-functorial}.
\item Given a commutative diagram
$$
\xymatrix{
Z \ar[r]_i \ar[d]_f & X \ar[d]^g \\
Z' \ar[r]^{i'} \ar[d]_{f'} & X' \ar[d]^{g'} \\
Z'' \ar[r]^{i''} & X''
}
$$
then the map $(f' \circ f)^*\mathcal{C}_{Z''/X''} \to \mathcal{C}_{Z/X}$
is the same as the composition of
$f^*\mathcal{C}_{Z'/X'} \to \mathcal{C}_{Z/X}$
with the pullback by $f$ of
$(f')^*\mathcal{C}_{Z''/X''} \to \mathcal{C}_{Z'/X'}$
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted. Note that Part (1) is a special case of
Lemma \ref{lemma-etale-conormal}.
\end{proof}
\begin{lemma}
\label{lemma-conormal-functorial-flat}
Let $S$ be a scheme. Let
$$
\xymatrix{
Z \ar[r]_i \ar[d]_f & X \ar[d]^g \\
Z' \ar[r]^{i'} & X'
}
$$
be a fibre product diagram of algebraic spaces over $S$. Assume
$i$, $i'$ immersions. Then the canonical map
$f^*\mathcal{C}_{Z'/X'} \to \mathcal{C}_{Z/X}$ of
Lemma \ref{lemma-conormal-functorial}
is surjective. If $g$ is flat, then it is an isomorphism.
\end{lemma}
\begin{proof}
Choose a commutative diagram
$$
\xymatrix{
U \ar[r] \ar[d] & X \ar[d] \\
U' \ar[r] & X'
}
$$
where $U$, $U'$ are schemes and the horizontal arrows are surjective
and \'etale, see
Spaces, Lemma \ref{spaces-lemma-lift-morphism-presentations}.
Then using
Lemmas \ref{lemma-etale-conormal} and \ref{lemma-conormal-functorial-more}
we see that the question reduces to the case of a morphism of schemes.
In the schemes case this is
Morphisms, Lemma \ref{morphisms-lemma-conormal-functorial-flat}.
\end{proof}
\begin{lemma}
\label{lemma-transitivity-conormal}
Let $S$ be a scheme.
Let $Z \to Y \to X$ be immersions of algebraic spaces.
Then there is a canonical exact sequence
$$
i^*\mathcal{C}_{Y/X} \to
\mathcal{C}_{Z/X} \to
\mathcal{C}_{Z/Y} \to 0
$$
where the maps come from
Lemma \ref{lemma-conormal-functorial}
and $i : Z \to Y$ is the first morphism.
\end{lemma}
\begin{proof}
Let $U$ be a scheme and let $U \to X$ be a surjective \'etale morphism. Via
Lemmas \ref{lemma-etale-conormal} and \ref{lemma-conormal-functorial-more}
the exactness of the sequence translates immediately into the
exactness of the corresponding sequence for the immersions of schemes
$Z \times_X U \to Y \times_X U \to U$. Hence the lemma follows from
Morphisms, Lemma \ref{morphisms-lemma-transitivity-conormal}.
\end{proof}
\section{The normal cone of an immersion}
\label{section-normal-cone}
\noindent
Let $S$ be a scheme. Let $i : Z \to X$ be a closed immersion of algebraic
spaces over $S$. Let $\mathcal{I} \subset \mathcal{O}_X$ be the
corresponding quasi-coherent sheaf of ideals, see
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-closed-immersion-ideals}.
Consider the quasi-coherent sheaf of graded $\mathcal{O}_X$-algebras
$\bigoplus_{n \geq 0} \mathcal{I}^n/\mathcal{I}^{n + 1}$.
Since the sheaves $\mathcal{I}^n/\mathcal{I}^{n + 1}$
are each annihilated by $\mathcal{I}$ this graded algebra
corresponds to a quasi-coherent sheaf of graded $\mathcal{O}_Z$-algebras by
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-i-star-equivalence}.
This quasi-coherent graded $\mathcal{O}_Z$-algebra is called the
{\it conormal algebra of $Z$ in $X$} and is often simply denoted
$\bigoplus_{n \geq 0} \mathcal{I}^n/\mathcal{I}^{n + 1}$
by the abuse of notation mentioned in
Morphisms of Spaces, Section
\ref{spaces-morphisms-section-closed-immersions-quasi-coherent}.
\medskip\noindent
In case $i : Z \to X$ is a (locally closed) immersion we define the conormal
algebra of $i$ as the conormal algebra of the closed immersion
$i : Z \to X \setminus \partial Z$, see Morphisms of Spaces, Remark
\ref{spaces-morphisms-remark-immersion}.
It is often denoted
$\bigoplus_{n \geq 0} \mathcal{I}^n/\mathcal{I}^{n + 1}$
where $\mathcal{I}$ is the ideal sheaf
of the closed immersion $i : Z \to X \setminus \partial Z$.
\begin{definition}
\label{definition-conormal-algebra}
Let $i : Z \to X$ be an immersion. The {\it conormal algebra
$\mathcal{C}_{Z/X, *}$ of $Z$ in $X$} or the {\it conormal algebra of $i$}
is the quasi-coherent sheaf of graded $\mathcal{O}_Z$-algebras
$\bigoplus_{n \geq 0} \mathcal{I}^n/\mathcal{I}^{n + 1}$ described above.
\end{definition}
\noindent
Thus $\mathcal{C}_{Z/X, 1} = \mathcal{C}_{Z/X}$ is the conormal sheaf
of the immersion. Also $\mathcal{C}_{Z/X, 0} = \mathcal{O}_Z$ and
$\mathcal{C}_{Z/X, n}$ is a quasi-coherent $\mathcal{O}_Z$-module
characterized by the property
\begin{equation}
\label{equation-conormal-in-degree-n}
i_*\mathcal{C}_{Z/X, n} = \mathcal{I}^n/\mathcal{I}^{n + 1}
\end{equation}
where $i : Z \to X \setminus \partial Z$ and $\mathcal{I}$ is the ideal
sheaf of $i$ as above. Finally, note that there is a canonical surjective map
\begin{equation}
\label{equation-conormal-algebra-quotient}
\text{Sym}^*(\mathcal{C}_{Z/X}) \longrightarrow \mathcal{C}_{Z/X, *}
\end{equation}
of quasi-coherent graded $\mathcal{O}_Z$-algebras which is an isomorphism
in degrees $0$ and $1$.
\begin{lemma}
\label{lemma-etale-conormal-algebra}
Let $S$ be a scheme. Let $i : Z \to X$ be an immersion of algebraic spaces
over $S$. Let $\varphi : U \to X$ be an \'etale morphism where $U$ is a
scheme. Set $Z_U = U \times_X Z$ which is a locally closed subscheme of $U$.
Then
$$
\mathcal{C}_{Z/X, *}|_{Z_U} = \mathcal{C}_{Z_U/U, *}
$$
canonically and functorially in $U$.
\end{lemma}
\begin{proof}
Let $T \subset X$ be a closed subspace such that $i$ defines a closed
immersion into $X \setminus T$. Let $\mathcal{I}$ be the quasi-coherent
sheaf of ideals on $X \setminus T$ defining $Z$. Then the lemma follows
from the fact that
$\mathcal{I}|_{U \setminus \varphi^{-1}(T)}$ is the sheaf of ideals of
the immersion $Z_U \to U \setminus \varphi^{-1}(T)$.
This is clear from the construction of $\mathcal{I}$ in
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-closed-immersion-ideals}.
\end{proof}
\begin{lemma}
\label{lemma-conormal-algebra-functorial}
Let $S$ be a scheme. Let
$$
\xymatrix{
Z \ar[r]_i \ar[d]_f & X \ar[d]^g \\
Z' \ar[r]^{i'} & X'
}
$$
be a commutative diagram of algebraic spaces over $S$.
Assume $i$, $i'$ immersions. There is a canonical map
of graded $\mathcal{O}_Z$-algebras
$$
f^*\mathcal{C}_{Z'/X', *}
\longrightarrow
\mathcal{C}_{Z/X, *}
$$
\end{lemma}
\begin{proof}
First find open subspaces $U' \subset X'$ and $U \subset X$ such that
$g(U) \subset U'$ and such that $i(Z) \subset U$ and $i(Z') \subset U'$
are closed (proof existence omitted). Replacing $X$ by $U$ and $X'$ by
$U'$ we may assume that $i$ and $i'$ are closed immersions.
Let $\mathcal{I}' \subset \mathcal{O}_{X'}$ and
$\mathcal{I} \subset \mathcal{O}_X$ be the quasi-coherent sheaves of
ideals associated to $i'$ and $i$, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-closed-immersion-ideals}.
Consider the composition
$$
g^{-1}\mathcal{I}' \to g^{-1}\mathcal{O}_{X'}
\xrightarrow{g^\sharp} \mathcal{O}_X \to
\mathcal{O}_X/\mathcal{I} = i_*\mathcal{O}_Z
$$
Since $g(i(Z)) \subset Z'$ we conclude this composition is zero (see
statement on factorizations in
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-closed-immersion-ideals}).
Thus we obtain a commutative diagram
$$
\xymatrix{
0 \ar[r] &
\mathcal{I} \ar[r] &
\mathcal{O}_X \ar[r] &
i_*\mathcal{O}_Z \ar[r] &
0 \\
0 \ar[r] &
g^{-1}\mathcal{I}' \ar[r] \ar[u] &
g^{-1}\mathcal{O}_{X'} \ar[r] \ar[u] &
g^{-1}i'_*\mathcal{O}_{Z'} \ar[r] \ar[u] &
0
}
$$
The lower row is exact since $g^{-1}$ is an exact functor.
By exactness we also see that
$(g^{-1}\mathcal{I}')^n = g^{-1}((\mathcal{I}')^n)$ for all $n \geq 1$.
Hence the diagram induces a map
$g^{-1}((\mathcal{I}')^n/(\mathcal{I}')^{n + 1}) \to
\mathcal{I}^n/\mathcal{I}^{n + 1}$.
Pulling back (using $i^{-1}$ for example) to $Z$ we obtain
$i^{-1}g^{-1}((\mathcal{I}')^n/(\mathcal{I}')^{n + 1}) \to
\mathcal{C}_{Z/X, n}$.
Since $i^{-1}g^{-1} = f^{-1}(i')^{-1}$ this gives maps
$f^{-1}\mathcal{C}_{Z'/X', n} \to \mathcal{C}_{Z/X, n}$, which induce
the desired map.
\end{proof}
\begin{lemma}
\label{lemma-conormal-algebra-functorial-flat}
Let $S$ be a scheme. Let
$$
\xymatrix{
Z \ar[r]_i \ar[d]_f & X \ar[d]^g \\
Z' \ar[r]^{i'} & X'
}
$$
be a cartesion square of algebraic spaces over $S$ with
$i$, $i'$ immersions. Then the canonical map
$f^*\mathcal{C}_{Z'/X', *} \to \mathcal{C}_{Z/X, *}$ of
Lemma \ref{lemma-conormal-algebra-functorial}
is surjective. If $g$ is flat, then it is an isomorphism.
\end{lemma}
\begin{proof}
We may check the statement after \'etale localizing $X'$.
In this case we may assume $X' \to X$ is a morphism of schemes,
hence $Z$ and $Z'$ are schemes and the result follows from
the case of schemes, see
Divisors, Lemma \ref{divisors-lemma-conormal-algebra-functorial-flat}.
\end{proof}
\noindent
We use the same conventions for cones and vector bundles over
algebraic spaces as we do for schemes (where we use
the conventions of EGA), see
Constructions, Sections \ref{constructions-section-cone} and
\ref{constructions-section-vector-bundle}.
In particular, a vector bundle is a very general gadget
(and not locally isomorphic to an affine space bundle).
\begin{definition}
\label{definition-normal-cone}
Let $S$ be a scheme. Let $i : Z \to X$ be an immersion of algebraic spaces
over $S$. The {\it normal cone $C_ZX$} of $Z$ in $X$ is
$$
C_ZX = \underline{\Spec}_Z(\mathcal{C}_{Z/X, *})
$$
see Morphisms of Spaces,
Definition \ref{spaces-morphisms-definition-relative-spec}. The
{\it normal bundle} of $Z$ in $X$ is the vector bundle
$$
N_ZX = \underline{\Spec}_Z(\text{Sym}(\mathcal{C}_{Z/X}))
$$
\end{definition}
\noindent
Thus $C_ZX \to Z$ is a cone over $Z$ and $N_ZX \to Z$ is a vector bundle
over $Z$. Moreover, the canonical surjection
(\ref{equation-conormal-algebra-quotient}) of graded algebras
defines a canonical closed immersion
\begin{equation}
\label{equation-normal-cone-in-normal-bundle}
C_ZX \longrightarrow N_ZX
\end{equation}
of cones over $Z$.
\section{Sheaf of differentials of a morphism}
\label{section-sheaf-differentials}
\noindent
We suggest the reader take a look at the corresponding section
in the chapter on commutative algebra
(Algebra, Section \ref{algebra-section-differentials}),
the corresponding section in the chapter on morphism of schemes
(Morphisms, Section \ref{morphisms-section-sheaf-differentials})
as well as
Modules on Sites, Section \ref{sites-modules-section-differentials}.
We first show that the notion of sheaf of differentials for a
morphism of schemes agrees with the corresponding morphism of
small \'etale (ringed) sites.
\medskip\noindent
To clearly state the following lemma we temporarily go back to
denoting $\mathcal{F}^a$ the sheaf of $\mathcal{O}_{X_\etale}$-modules
associated to a quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$
on the scheme $X$, see
Descent, Definition \ref{descent-definition-structure-sheaf}.
\begin{lemma}
\label{lemma-match-modules-differentials}
Let $f : X \to Y$ be a morphism of schemes. Let
$f_{small} : X_\etale \to Y_\etale$ be the associated
morphism of small \'etale sites, see
Descent, Remark \ref{descent-remark-change-topologies-ringed}.
Then there is a canonical isomorphism
$$
(\Omega_{X/Y})^a = \Omega_{X_\etale/Y_\etale}
$$
compatible with universal derivations. Here the first module
is the sheaf on $X_\etale$ associated
to the quasi-coherent $\mathcal{O}_X$-module $\Omega_{X/Y}$, see
Morphisms, Definition \ref{morphisms-definition-sheaf-differentials},
and the second module is the one from
Modules on Sites,
Definition \ref{sites-modules-definition-module-differentials}.
\end{lemma}
\begin{proof}
Let $h : U \to X$ be an \'etale morphism. In this case the natural map
$h^*\Omega_{X/Y} \to \Omega_{U/Y}$ is an isomorphism, see
More on Morphisms,
Lemma \ref{more-morphisms-lemma-sheaf-differentials-etale-localization}.
This means that there is a natural $\mathcal{O}_{Y_\etale}$-derivation
$$
\text{d}^a : \mathcal{O}_{X_\etale} \longrightarrow (\Omega_{X/Y})^a
$$
since we have just seen that the value of $(\Omega_{X/Y})^a$ on any object
$U$ of $X_\etale$ is canonically identified with
$\Gamma(U, \Omega_{U/Y})$. By the universal property of
$\text{d}_{X/Y} :
\mathcal{O}_{X_\etale}
\to
\Omega_{X_\etale/Y_\etale}$
there is a unique $\mathcal{O}_{X_\etale}$-linear map
$c : \Omega_{X_\etale/Y_\etale} \to (\Omega_{X/Y})^a$
such that
$\text{d}^a = c \circ \text{d}_{X/Y}$.
\medskip\noindent
Conversely, suppose that $\mathcal{F}$ is an
$\mathcal{O}_{X_\etale}$-module
and $D : \mathcal{O}_{X_\etale} \to \mathcal{F}$ is a
$\mathcal{O}_{Y_\etale}$-derivation. Then we can simply restrict
$D$ to the small Zariski site $X_{Zar}$ of $X$. Since sheaves on $X_{Zar}$
agree with sheaves on $X$, see
Descent, Remark \ref{descent-remark-Zariski-site-space},
we see that $D|_{X_{Zar}} : \mathcal{O}_X \to \mathcal{F}|_{X_{Zar}}$
is just a ``usual'' $Y$-derivation. Hence we obtain a map
$\psi : \Omega_{X/Y} \longrightarrow \mathcal{F}|_{X_{Zar}}$
such that $D|_{X_{Zar}} = \psi \circ \text{d}$. In particular, if we
apply this with $\mathcal{F} = \Omega_{X_\etale/Y_\etale}$
we obtain a map
$$
c' :
\Omega_{X/Y}
\longrightarrow
\Omega_{X_\etale/Y_\etale}|_{X_{Zar}}
$$
Consider the morphism of ringed sites
$\text{id}_{small, \etale, Zar} : X_\etale \to X_{Zar}$
discussed in
Descent, Remark \ref{descent-remark-change-topologies-ringed} and
Lemma \ref{descent-lemma-compare-sites}.
Since the restriction functor $\mathcal{F} \mapsto \mathcal{F}|_{X_{Zar}}$
is equal to $\text{id}_{small, \etale, Zar, *}$, since
$\text{id}_{small, \etale, Zar}^*$ is left adjoint to
$\text{id}_{small, \etale, Zar, *}$ and since
$(\Omega_{X/Y})^a = \text{id}_{small, \etale, Zar}^*\Omega_{X/Y}$
we see that $c'$ is adjoint to a map
$$
c'' :
(\Omega_{X/Y})^a
\longrightarrow
\Omega_{X_\etale/Y_\etale}.
$$
We claim that $c''$ and $c'$ are mutually inverse.
This claim finishes the proof of the lemma.
To see this it is enough to show that $c''(\text{d}(f)) = \text{d}_{X/Y}(f)$
and $c(\text{d}_{X/Y}(f)) = \text{d}(f)$ if $f$ is a local section of
$\mathcal{O}_X$ over an open of $X$. We omit the verification.
\end{proof}
\noindent
This clears the way for the following definition. For an alternative, see
Remark \ref{remark-alternative}.
\begin{definition}
\label{definition-sheaf-differentials}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. The {\it sheaf of differentials $\Omega_{X/Y}$ of $X$ over $Y$}
is sheaf of differentials
(Modules on Sites,
Definition \ref{sites-modules-definition-sheaf-differentials})
for the morphism of ringed topoi
$$
(f_{small}, f^\sharp) :
(X_\etale, \mathcal{O}_X)
\to
(Y_\etale, \mathcal{O}_Y)
$$
of
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-morphism-ringed-topoi}.
The {\it universal $Y$-derivation} will be denoted
$\text{d}_{X/Y} : \mathcal{O}_X \to \Omega_{X/Y}$.
\end{definition}
\noindent
By
Lemma \ref{lemma-match-modules-differentials}
this does not conflict with the already existing
notion in case $X$ and $Y$ are representable. From now on, if $X$ and $Y$
are representable, we no longer distinguish between the sheaf of differentials
defined above and the one defined in
Morphisms, Definition \ref{morphisms-definition-sheaf-differentials}.
We want to relate this to the usual modules of differentials for
morphisms of schemes. Here is the key lemma.
\begin{lemma}
\label{lemma-localize-differentials}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Consider any commutative diagram
$$
\xymatrix{
U \ar[d]_a \ar[r]_\psi & V \ar[d]^b \\
X \ar[r]^f & Y
}
$$
where the vertical arrows are \'etale morphisms of algebraic spaces. Then
$$
\Omega_{X/Y}|_{U_\etale} = \Omega_{U/V}
$$
In particular, if $U$, $V$ are schemes, then this is equal to the usual
sheaf of differentials of the morphism of schemes $U \to V$.
\end{lemma}
\begin{proof}
By
Properties of Spaces, Lemma \ref{spaces-properties-lemma-etale-morphism-topoi}
and Equation (\ref{spaces-properties-equation-restrict})
we may think of the restriction of a sheaf on $X_\etale$ to
$U_\etale$ as the pullback by $a_{small}$. Similarly for $b$. By
Modules on Sites, Lemma \ref{sites-modules-lemma-localize-differentials}
we have
$$
\Omega_{X/Y}|_{U_\etale} =
\Omega_{\mathcal{O}_{U_\etale}/
a_{small}^{-1}f_{small}^{-1}\mathcal{O}_{Y_\etale}}
$$
Since $a_{small}^{-1}f_{small}^{-1}\mathcal{O}_{Y_\etale}
= \psi_{small}^{-1}b_{small}^{-1}\mathcal{O}_{Y_\etale}
= \psi_{small}^{-1}\mathcal{O}_{V_\etale}$ we see that the lemma holds.
\end{proof}
\begin{lemma}
\label{lemma-module-differentials-quasi-coherent}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Then $\Omega_{X/Y}$ is a quasi-coherent $\mathcal{O}_X$-module.
\end{lemma}
\begin{proof}
Choose a diagram as in
Lemma \ref{lemma-localize-differentials}
with $a$ and $b$ surjective and $U$ and $V$ schemes.
Then we see that $\Omega_{X/Y}|_U = \Omega_{U/V}$ which is
quasi-coherent (for example by
Morphisms, Lemma \ref{morphisms-lemma-differentials-diagonal}).
Hence we conclude that $\Omega_{X/Y}$ is quasi-coherent by
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-characterize-quasi-coherent}.
\end{proof}
\begin{remark}
\label{remark-alternative}
Now that we know that $\Omega_{X/Y}$ is quasi-coherent we can attempt
to construct it in another manner. For example we can use the result of
Properties of Spaces,
Section \ref{spaces-properties-section-quasi-coherent-presentation}
to construct the sheaf of differentials by glueing.
For example if $Y$ is a scheme and if $U \to X$ is a surjective \'etale morphism
from a scheme towards $X$, then we see that $\Omega_{U/Y}$ is
a quasi-coherent $\mathcal{O}_U$-module, and since $s, t : R \to U$
are \'etale we get an isomorphism
$$
\alpha : s^*\Omega_{U/Y} \to \Omega_{R/Y} \to t^*\Omega_{U/Y}
$$
by using
Morphisms, Lemma \ref{morphisms-lemma-triangle-differentials-smooth}.
You check that this satisfies the cocycle condition and you're done.
If $Y$ is not a scheme, then you define $\Omega_{U/Y}$ as the cokernel
of the map $(U \to Y)^*\Omega_{Y/S} \to \Omega_{U/S}$, and proceed as
before. This two step process is a little bit ugly. Another possibility
is to glue the sheaves $\Omega_{U/V}$ for any diagram as in
Lemma \ref{lemma-localize-differentials}
but this is not very elegant either. Both approaches will work however, and
will give a slightly more elementary construction of the sheaf of
differentials.
\end{remark}
\begin{lemma}
\label{lemma-functoriality-differentials}
Let $S$ be a scheme. Let
$$
\xymatrix{
X' \ar[d] \ar[r]_f & X \ar[d] \\
Y' \ar[r] & Y
}
$$
be a commutative diagram of algebraic spaces. The map
$f^\sharp : \mathcal{O}_X \to f_*\mathcal{O}_{X'}$ composed with the map
$f_*\text{d}_{X'/Y'} : f_*\mathcal{O}_{X'} \to f_*\Omega_{X'/Y'}$ is a
$Y$-derivation. Hence we obtain a canonical map of $\mathcal{O}_X$-modules
$\Omega_{X/Y} \to f_*\Omega_{X'/Y'}$, and by
adjointness of $f_*$ and $f^*$ a
canonical $\mathcal{O}_{X'}$-module homomorphism
$$
c_f : f^*\Omega_{X/Y} \longrightarrow \Omega_{X'/Y'}.
$$
It is uniquely characterized by the property that
$f^*\text{d}_{X/Y}(t)$ mapsto $\text{d}_{X'/Y'}(f^* t)$
for any local section $t$ of $\mathcal{O}_X$.
\end{lemma}
\begin{proof}
This is a special case of
Modules on Sites, Lemma
\ref{sites-modules-lemma-functoriality-differentials-ringed-topoi}.
\end{proof}
\begin{lemma}
\label{lemma-check-functoriality-differentials}
Let $S$ be a scheme. Let
$$
\xymatrix{
X'' \ar[d] \ar[r]_g & X' \ar[d] \ar[r]_f & X \ar[d] \\
Y'' \ar[r] & Y' \ar[r] & Y
}
$$
be a commutative diagram of algebraic spaces over $S$. Then we have
$$
c_{f \circ g} = c_g \circ g^* c_f
$$
as maps $(f \circ g)^*\Omega_{X/Y} \to \Omega_{X''/Y''}$.
\end{lemma}
\begin{proof}
Omitted. Hint: Use the characterization of $c_f, c_g, c_{f \circ g}$
in terms of the effect these maps have on local sections.
\end{proof}