forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchow.tex
9725 lines (8867 loc) · 322 KB
/
chow.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Chow Homology and Chern Classes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we discuss Chow homology groups and the construction
of chern classes of vector bundles as elements of operational
Chow cohomology groups (everything with $\mathbf{Z}$-coefficients).
\medskip\noindent
In the first part of this chapter we work on determinants of finite
length modules, we define periodic complexes, their determinants,
and properties of these. All of this is done to give a direct proof
of the Key Lemma \ref{lemma-secondary-ramification}.
Presumably a more standard approach to this lemma would be to
use K-theory of local Noetherian rings.
\medskip\noindent
Next, we introduce the basic setup we work with in the rest of this
chapter in Section \ref{section-setup}. To make the material a little
bit more challenging we decided to treat a somewhat more general case
than is usually done. Namely we assume our schemes $X$ are locally of
finite type over a fixed locally Noetherian base scheme which is universally
catenary and is endowed with a dimension function. These assumption suffice
to be able to define the Chow homology groups $A_*(X)$ and the action of
capping with chern classes on them. This is an indication that we should
be able to define these also for algebraic stacks locally of finite type
over such a base.
\medskip\noindent
Next, we follow the first few chapters of \cite{F} in order to define
cycles, flat pullback, proper pushforward, and rational equivalence,
except that we have been less precise about the supports of the cycles
involved.
\medskip\noindent
We diverge from the presentation given in \cite{F} by using the
Key lemma mentioned above to prove a basic commutativity relation in
Section \ref{section-key}. Using this we prove that the operation
of intersecting with an invertible sheaf passes through rational
equivalence and is commutative, see Section \ref{section-commutativity}.
One more application of the Key
lemma proves that the Gysin map of an effective Cartier divisor
passes through rational equivalence, see Section \ref{section-gysin}.
Having proved this, it is straightforward to define chern
classes of vector bundles, prove additivity, prove the splitting principle,
introduce chern characters, Todd classes, and state the
Grothendieck-Riemann-Roch theorem.
\medskip\noindent
In the appendix we collect some hints to different approaches to this material.
\medskip\noindent
We will return to the Chow groups $A_*(X)$ for smooth projective varieties
over algebraically closed fields in the next chapter. Using a moving
lemma as in \cite{Samuel}, \cite{ChevalleyI}, and \cite{ChevalleyII}
and Serre's Tor-formula
(see \cite{Serre_local_algebra} or \cite{Serre_algebre_locale})
we will define a ring structure on $A_*(X)$. See
Intersection Theory, Section \ref{intersection-section-introduction} ff.
\section{Determinants of finite length modules}
\label{section-determinants-finite-length}
\noindent
The material in this section is related to the material in
the paper \cite{determinant} and to the material in the
thesis \cite{Joe}. If you have a good reference then please
email \href{mailto:stacks.project@gmail.com}{stacks.project@gmail.com}.
\medskip\noindent
Given any field $\kappa$ and
any finite dimensional $\kappa$-vector space $V$ we set
$\det\nolimits_\kappa(V) = \wedge^n(V)$
where $n = \dim_\kappa(V)$. We want to generalize this slightly.
\begin{definition}
\label{definition-determinant}
Let $R$ be a local ring with maximal ideal $\mathfrak m$ and
residue field $\kappa$. Let $M$ be a finite length $R$-module.
Say $l = \text{length}_R(M)$.
\begin{enumerate}
\item Given elements $x_1, \ldots, x_r \in M$ we denote
$\langle x_1, \ldots, x_r \rangle = Rx_1 + \ldots + Rx_r$ the
$R$-submodule of $R$ generated by $x_1, \ldots, x_r$.
\item We will say an $l$-tuple of elements
$(e_1, \ldots, e_l)$ of $M$ is {\it admissible} if
$\mathfrak m e_i \in \langle e_1, \ldots, e_{i - 1} \rangle$
for $i = 1, \ldots, l$.
\item A {\it symbol} $[e_1, \ldots, e_l]$ will mean
$(e_1, \ldots, e_l)$ is an admissible $l$-tuple.
\item An {\it admissible relation} between symbols is one of the following:
\begin{enumerate}
\item if $(e_1, \ldots, e_l)$ is an admissible sequence and
for some $1 \leq a \leq l$ we have
$e_a \in \langle e_1, \ldots, e_{a - 1}\rangle$, then
$[e_1, \ldots, e_l] = 0$,
\item if $(e_1, \ldots, e_l)$ is an admissible sequence and
for some $1 \leq a \leq l$ we have $e_a = \lambda e'_a + x$
with $\lambda \in R^*$, and
$x \in \langle e_1, \ldots, e_{a - 1}\rangle$, then
$$
[e_1, \ldots, e_l] =
\overline{\lambda} [e_1, \ldots, e_{a - 1}, e'_a, e_{a + 1}, \ldots, e_l]
$$
where $\overline{\lambda} \in \kappa^*$ is the image of $\lambda$ in
the residue field, and
\item if $(e_1, \ldots, e_l)$ is an admissible sequence and
$\mathfrak m e_a \subset \langle e_1, \ldots, e_{a - 2}\rangle$ then
$$
[e_1, \ldots, e_l] =
- [e_1, \ldots, e_{a - 2}, e_a, e_{a - 1}, e_{a + 1}, \ldots, e_l].
$$
\end{enumerate}
\item
We define the {\it determinant of the finite length $R$-module $M$} to be
$$
\det\nolimits_\kappa(M) =
\left\{
\frac{\kappa\text{-vector space generated by symbols}}
{\kappa\text{-linear combinations of admissible relations}}
\right\}
$$
\end{enumerate}
\end{definition}
\noindent
We stress that always $l = \text{length}_R(M)$. We also stress that
it does not follow that the symbol $[e_1, \ldots, e_l]$ is
additive in the entries (this will typically not be the case).
Before we can show that the determinant $\det_\kappa(M)$ actually
has dimension $1$ we have to show that it has dimension at most $1$.
\begin{lemma}
\label{lemma-dimension-at-most-one}
With notations as above we have $\dim_\kappa(\det_\kappa(M)) \leq 1$.
\end{lemma}
\begin{proof}
Fix an admissible sequence $(f_1, \ldots, f_l)$ of $M$ such that
$$
\text{length}_R(\langle f_1, \ldots, f_i\rangle) = i
$$
for $i = 1, \ldots, l$. Such an admissible sequence exists exactly because
$M$ has length $l$. We will show that any element of
$\det_\kappa(M)$ is a $\kappa$-multiple of the symbol
$[f_1, \ldots, f_l]$. This will prove the lemma.
\medskip\noindent
Let $(e_1, \ldots, e_l)$ be an admissible sequence of $M$.
It suffices to show that $[e_1, \ldots, e_l]$ is a multiple
of $[f_1, \ldots, f_l]$. First assume that
$\langle e_1, \ldots, e_l\rangle \not = M$. Then there exists
an $i \in [1, \ldots, l]$ such that
$e_i \in \langle e_1, \ldots, e_{i - 1}\rangle$. It immediately
follows from the first admissible relation that
$[e_1, \ldots, e_n] = 0$ in $\det_\kappa(M)$.
Hence we may assume that $\langle e_1, \ldots, e_l\rangle = M$.
In particular there exists a smallest index $i \in \{1, \ldots, l\}$
such that $f_1 \in \langle e_1, \ldots, e_i\rangle$. This means
that $e_i = \lambda f_1 + x$ with
$x \in \langle e_1, \ldots, e_{i - 1}\rangle$ and $\lambda \in R^*$.
By the second admissible relation this means that
$[e_1, \ldots, e_l] =
\overline{\lambda}[e_1, \ldots, e_{i - 1}, f_1, e_{i + 1}, \ldots, e_l]$.
Note that $\mathfrak m f_1 = 0$. Hence by applying the third
admissible relation $i - 1$ times we see that
$$
[e_1, \ldots, e_l] =
(-1)^{i - 1}\overline{\lambda}
[f_1, e_1, \ldots, e_{i - 1}, e_{i + 1}, \ldots, e_l].
$$
Note that it is also the case that
$ \langle f_1, e_1, \ldots, e_{i - 1}, e_{i + 1}, \ldots, e_l\rangle = M$.
By induction suppose we have proven that our original
symbol is equal to a scalar times
$$
[f_1, \ldots, f_j, e_{j + 1}, \ldots, e_l]
$$
for some admissible sequence $(f_1, \ldots, f_j, e_{j + 1}, \ldots, e_l)$
whose elements generate $M$, i.e., \ with
$\langle f_1, \ldots, f_j, e_{j + 1}, \ldots, e_l\rangle = M$.
Then we find the smallest $i$ such that
$f_{j + 1} \in \langle f_1, \ldots, f_j, e_{j + 1}, \ldots, e_i\rangle$
and we go through the same process as above to see that
$$
[f_1, \ldots, f_j, e_{j + 1}, \ldots, e_l]
=
(\text{scalar}) [f_1, \ldots, f_j, f_{j + 1}, e_{j + 1},
\ldots, \hat{e_i}, \ldots, e_l]
$$
Continuing in this vein we obtain the desired result.
\end{proof}
\noindent
Before we show that $\det_\kappa(M)$ always has dimension $1$,
let us show that it agrees with the usual top exterior power in
the case the module is a vector space over $\kappa$.
\begin{lemma}
\label{lemma-compare-det}
Let $R$ be a local ring with maximal ideal $\mathfrak m$ and
residue field $\kappa$. Let $M$ be a finite length $R$-module
which is annihilated by $\mathfrak m$. Let $l = \dim_\kappa(M)$.
Then the map
$$
\det\nolimits_\kappa(M) \longrightarrow \wedge^l_\kappa(M),
\quad
[e_1, \ldots, e_l] \longmapsto e_1 \wedge \ldots \wedge e_l
$$
is an isomorphism.
\end{lemma}
\begin{proof}
It is clear that the rule described in the lemma gives a $\kappa$-linear
map since all of the admissible relations are satisfied by the usual
symbols $e_1 \wedge \ldots \wedge e_l$. It is also clearly a surjective
map. Since by Lemma \ref{lemma-dimension-at-most-one} the left hand side
has dimension at most one
we see that the map is an isomorphism.
\end{proof}
\begin{lemma}
\label{lemma-determinant-dimension-one}
Let $R$ be a local ring with maximal ideal $\mathfrak m$ and
residue field $\kappa$. Let $M$ be a finite length $R$-module.
The determinant $\det_\kappa(M)$ defined above is a $\kappa$-vector
space of dimension $1$. It is generated by the symbol
$[f_1, \ldots, f_l]$ for any admissible sequence such
that $\langle f_1, \ldots f_l \rangle = M$.
\end{lemma}
\begin{proof}
We know $\det_\kappa(M)$ has dimension at most $1$, and in fact that it
is generated by $[f_1, \ldots, f_l]$, by
Lemma \ref{lemma-dimension-at-most-one} and its proof.
We will show by induction on $l = \text{length}(M)$
that it is nonzero. For $l = 1$ it follows from Lemma \ref{lemma-compare-det}.
Choose a nonzero element $f \in M$
with $\mathfrak m f = 0$. Set $\overline{M} = M /\langle f \rangle$,
and denote the quotient map $x \mapsto \overline{x}$.
We will define a surjective map
$$
\psi : \det\nolimits_k(M) \to \det\nolimits_\kappa(\overline{M})
$$
which will prove the lemma since by induction the determinant of
$\overline{M}$ is nonzero.
\medskip\noindent
We define $\psi$ on symbols as follows.
Let $(e_1, \ldots, e_l)$ be an admissible sequence.
If $f \not \in \langle e_1, \ldots, e_l \rangle$ then
we simply set $\psi([e_1, \ldots, e_l]) = 0$.
If $f \in \langle e_1, \ldots, e_l \rangle$ then we choose
an $i$ minimal such that $f \in \langle e_1, \ldots, e_i \rangle$.
We may write $e_i = \lambda f + x$ for some unit $\lambda \in R$
and $x \in \langle e_1, \ldots, e_{i - 1} \rangle$.
In this case we set
$$
\psi([e_1, \ldots, e_l]) =
(-1)^i
\overline{\lambda}[\overline{e}_1, \ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1}, \ldots, \overline{e}_l].
$$
Note that it is indeed the case that
$(\overline{e}_1, \ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1}, \ldots, \overline{e}_l)$
is an admissible sequence in $\overline{M}$, so this makes sense.
Let us show that extending this rule $\kappa$-linearly to
linear combinations of symbols does indeed lead to a map on
determinants. To do this we have to show that the admissible
relations are mapped to zero.
\medskip\noindent
Type (a) relations. Suppose we have $(e_1, \ldots, e_l)$ an
admissible sequence and for some $1 \leq a \leq l$ we have
$e_a \in \langle e_1, \ldots, e_{a - 1}\rangle$.
Suppose that $f \in \langle e_1, \ldots, e_i\rangle$ with $i$ minimal.
Then $i \not = a$ and
$\overline{e}_a \in \langle \overline{e}_1, \ldots,
\hat{\overline{e}_i}, \ldots, \overline{e}_{a - 1}\rangle$ if $i < a$
or
$\overline{e}_a \in \langle \overline{e}_1, \ldots,
\overline{e}_{a - 1}\rangle$ if $i > a$.
Thus the same admissible relation for $\det_\kappa(\overline{M})$ forces
the symbol $[\overline{e}_1, \ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1}, \ldots, \overline{e}_l]$
to be zero as desired.
\medskip\noindent
Type (b) relations. Suppose we have $(e_1, \ldots, e_l)$ an
admissible sequence and for some $1 \leq a \leq l$ we have
$e_a = \lambda e'_a + x$ with $\lambda \in R^*$, and
$x \in \langle e_1, \ldots, e_{a - 1}\rangle$.
Suppose that $f \in \langle e_1, \ldots, e_i\rangle$ with $i$ minimal.
Say $e_i = \mu f + y$ with $y \in \langle e_1, \ldots, e_{i - 1}\rangle$.
If $i < a$ then the desired equality is
$$
(-1)^i
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1},
\ldots,
\overline{e}_l]
=
(-1)^i
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1},
\ldots,
\overline{e}_{a - 1},
\overline{e}'_a,
\overline{e}_{a + 1},
\ldots,
\overline{e}_l]
$$
which follows from $\overline{e}_a = \lambda \overline{e}'_a + \overline{x}$
and the corresponding admissible relation for $\det_\kappa(\overline{M})$.
If $i > a$ then the desired equality is
$$
(-1)^i
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1},
\ldots,
\overline{e}_l]
=
(-1)^i
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{a - 1},
\overline{e}'_a,
\overline{e}_{a + 1},
\ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1},
\ldots,
\overline{e}_l]
$$
which follows from $\overline{e}_a = \lambda \overline{e}'_a + \overline{x}$
and the corresponding admissible relation for $\det_\kappa(\overline{M})$.
The interesting case is when $i = a$. In this case we have
$e_a = \lambda e'_a + x = \mu f + y$. Hence also
$e'_a = \lambda^{-1}(\mu f + y - x)$. Thus we see that
$$
\psi([e_1, \ldots, e_l])
= (-1)^i \overline{\mu}
[\overline{e}_1, \ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1}, \ldots, \overline{e}_l]
=
\psi(
\overline{\lambda}
[e_1, \ldots, e_{a - 1}, e'_a, e_{a + 1}, \ldots, e_l]
)
$$
as desired.
\medskip\noindent
Type (c) relations. Suppose that $(e_1, \ldots, e_l)$
is an admissible sequence and
$\mathfrak m e_a \subset \langle e_1, \ldots, e_{a - 2}\rangle$.
Suppose that $f \in \langle e_1, \ldots, e_i\rangle$ with $i$ minimal.
Say $e_i = \lambda f + x$ with $x \in \langle e_1, \ldots, e_{i - 1}\rangle$.
We distinguish $4$ cases:
\medskip\noindent
Case 1: $i < a - 1$. The desired equality is
\begin{align*}
& (-1)^i
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1},
\ldots,
\overline{e}_l] \\
& =
(-1)^{i + 1}
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1},
\ldots,
\overline{e}_{a - 2},
\overline{e}_a,
\overline{e}_{a - 1},
\overline{e}_{a + 1},
\ldots,
\overline{e}_l]
\end{align*}
which follows from the type (c) admissible relation for
$\det_\kappa(\overline{M})$.
\medskip\noindent
Case 2: $i > a$. The desired equality is
\begin{align*}
& (-1)^i
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1},
\ldots,
\overline{e}_l] \\
& =
(-1)^{i + 1}
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{a - 2},
\overline{e}_a,
\overline{e}_{a - 1},
\overline{e}_{a + 1},
\ldots,
\overline{e}_{i - 1},
\overline{e}_{i + 1},
\ldots,
\overline{e}_l]
\end{align*}
which follows from the type (c) admissible relation for
$\det_\kappa(\overline{M})$.
\medskip\noindent
Case 3: $i = a$. We write $e_a = \lambda f + \mu e_{a - 1} + y$
with $y \in \langle e_1, \ldots, e_{a - 2}\rangle$. Then
$$
\psi([e_1, \ldots, e_l]) =
(-1)^a
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{a - 1},
\overline{e}_{a + 1},
\ldots,
\overline{e}_l]
$$
by definition. If $\overline{\mu}$ is nonzero, then we have
$e_{a - 1} = - \mu^{-1} \lambda f + \mu^{-1}e_a - \mu^{-1} y$
and we obtain
$$
\psi(-[e_1, \ldots, e_{a - 2}, e_a, e_{a - 1}, e_{a + 1}, \ldots, e_l]) =
(-1)^a
\overline{\mu^{-1}\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{a - 2},
\overline{e}_a,
\overline{e}_{a + 1},
\ldots,
\overline{e}_l]
$$
by definition. Since in $\overline{M}$ we have
$\overline{e}_a = \mu \overline{e}_{a - 1} + \overline{y}$ we see
the two outcomes are equal by relation (a) for $\det_\kappa(\overline{M})$.
If on the other hand $\overline{\mu}$ is zero, then we can write
$e_a = \lambda f + y$ with $y \in \langle e_1, \ldots, e_{a - 2}\rangle$
and we have
$$
\psi(-[e_1, \ldots, e_{a - 2}, e_a, e_{a - 1}, e_{a + 1}, \ldots, e_l]) =
(-1)^a
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{a - 1},
\overline{e}_{a + 1},
\ldots,
\overline{e}_l]
$$
which is equal to $\psi([e_1, \ldots, e_l])$.
\medskip\noindent
Case 4: $i = a - 1$. Here we have
$$
\psi([e_1, \ldots, e_l]) =
(-1)^{a - 1}
\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{a - 2},
\overline{e}_a,
\ldots,
\overline{e}_l]
$$
by definition. If $f \not \in \langle e_1, \ldots, e_{a - 2}, e_a \rangle$
then
$$
\psi(-[e_1, \ldots, e_{a - 2}, e_a, e_{a - 1}, e_{a + 1}, \ldots, e_l]) =
(-1)^{a + 1}\overline{\lambda}
[\overline{e}_1,
\ldots,
\overline{e}_{a - 2},
\overline{e}_a,
\ldots,
\overline{e}_l]
$$
Since $(-1)^{a - 1} = (-1)^{a + 1}$ the two expressions are the same.
Finally, assume $f \in \langle e_1, \ldots, e_{a - 2}, e_a \rangle$.
In this case we see that $e_{a - 1} = \lambda f + x$ with
$x \in \langle e_1, \ldots, e_{a - 2}\rangle$ and
$e_a = \mu f + y$ with $y \in \langle e_1, \ldots, e_{a - 2}\rangle$
for units $\lambda, \mu \in R$.
We conclude that both
$e_a \in \langle e_1, \ldots, e_{a - 1} \rangle$ and
$e_{a - 1} \in \langle e_1, \ldots, e_{a - 2}, e_a\rangle$.
In this case a relation of type (a) applies to both
$[e_1, \ldots, e_l]$ and
$[e_1, \ldots, e_{a - 2}, e_a, e_{a - 1}, e_{a + 1}, \ldots, e_l]$
and the compatibility of $\psi$ with these shown above to see that both
$$
\psi([e_1, \ldots, e_l])
\quad\text{and}\quad
\psi([e_1, \ldots, e_{a - 2}, e_a, e_{a - 1}, e_{a + 1}, \ldots, e_l])
$$
are zero, as desired.
\medskip\noindent
At this point we have shown that $\psi$ is well defined, and all that remains
is to show that it is surjective. To see this let
$(\overline{f}_2, \ldots, \overline{f}_l)$ be an admissible sequence
in $\overline{M}$. We can choose lifts $f_2, \ldots, f_l \in M$, and
then $(f, f_2, \ldots, f_l)$ is an admissible sequence in $M$.
Since $\psi([f, f_2, \ldots, f_l]) = [f_2, \ldots, f_l]$ we win.
\end{proof}
\noindent
Let $R$ be a local ring with maximal ideal $\mathfrak m$ and
residue field $\kappa$. Note that if $\varphi : M \to N$ is an
isomorphism of finite length $R$-modules, then we get an
isomorphism
$$
\det\nolimits_\kappa(\varphi) :
\det\nolimits_\kappa(M)
\to
\det\nolimits_\kappa(N)
$$
simply by the rule
$$
\det\nolimits_\kappa(\varphi)([e_1, \ldots, e_l])
=
[\varphi(e_1), \ldots, \varphi(e_l)]
$$
for any symbol $[e_1, \ldots, e_l]$ for $M$.
Hence we see that $\det\nolimits_\kappa$ is a functor
\begin{equation}
\label{equation-functor}
\left\{
\begin{matrix}
\text{finite length }R\text{-modules}\\
\text{with isomorphisms}
\end{matrix}
\right\}
\longrightarrow
\left\{
\begin{matrix}
1\text{-dimensional }\kappa\text{-vector spaces}\\
\text{with isomorphisms}
\end{matrix}
\right\}
\end{equation}
This is typical for a ``determinant functor''
(see \cite{Knudsen}), as is the following additivity
property.
\begin{lemma}
\label{lemma-det-exact-sequences}
Let $(R, \mathfrak m, \kappa)$ be a local ring.
For every short exact sequence
$$
0 \to K \to L \to M \to 0
$$
of finite length $R$-modules there exists a canonical isomorphism
$$
\gamma_{K \to L \to M} :
\det\nolimits_\kappa(K) \otimes_\kappa \det\nolimits_\kappa(M)
\longrightarrow
\det\nolimits_\kappa(L)
$$
defined by the rule on nonzero symbols
$$
[e_1, \ldots, e_k]
\otimes
[\overline{f}_1, \ldots, \overline{f}_m]
\longrightarrow
[e_1, \ldots, e_k, f_1, \ldots, f_m]
$$
with the following properties:
\begin{enumerate}
\item For every isomorphism of short exact sequences, i.e., for
every commutative diagram
$$
\xymatrix{
0 \ar[r] &
K \ar[r] \ar[d]^u &
L \ar[r] \ar[d]^v &
M \ar[r] \ar[d]^w &
0 \\
0 \ar[r] &
K' \ar[r] &
L' \ar[r] &
M' \ar[r] &
0
}
$$
with short exact rows and isomorphisms $u, v, w$ we have
$$
\gamma_{K' \to L' \to M'} \circ
(\det\nolimits_\kappa(u) \otimes \det\nolimits_\kappa(w))
=
\det\nolimits_\kappa(v) \circ
\gamma_{K \to L \to M},
$$
\item for every commutative square of finite length $R$-modules
with exact rows and columns
$$
\xymatrix{
& 0 \ar[d] & 0 \ar[d] & 0 \ar[d] & \\
0 \ar[r] & A \ar[r] \ar[d] & B \ar[r] \ar[d] & C \ar[r] \ar[d] & 0 \\
0 \ar[r] & D \ar[r] \ar[d] & E \ar[r] \ar[d] & F \ar[r] \ar[d] & 0 \\
0 \ar[r] & G \ar[r] \ar[d] & H \ar[r] \ar[d] & I \ar[r] \ar[d] & 0 \\
& 0 & 0 & 0 &
}
$$
the following diagram is commutative
$$
\xymatrix{
\det\nolimits_\kappa(A) \otimes
\det\nolimits_\kappa(C) \otimes
\det\nolimits_\kappa(G) \otimes
\det\nolimits_\kappa(I)
\ar[dd]_{\epsilon}
\ar[rrr]_-{\gamma_{A \to B \to C} \otimes \gamma_{G \to H \to I}}
& & &
\det\nolimits_\kappa(B) \otimes
\det\nolimits_\kappa(H)
\ar[d]^{\gamma_{B \to E \to H}}
\\
& & & \det\nolimits_\kappa(E)
\\
\det\nolimits_\kappa(A) \otimes
\det\nolimits_\kappa(G) \otimes
\det\nolimits_\kappa(C) \otimes
\det\nolimits_\kappa(I)
\ar[rrr]^-{\gamma_{A \to D \to G} \otimes \gamma_{C \to F \to I}}
& & &
\det\nolimits_\kappa(D) \otimes
\det\nolimits_\kappa(F)
\ar[u]_{\gamma_{D \to E \to F}}
}
$$
where $\epsilon$ is the switch of the factors in the tensor product
times $(-1)^{cg}$ with $c = \text{length}_R(C)$ and $g = \text{length}_R(G)$,
and
\item the map $\gamma_{K \to L \to M}$ agrees with the usual isomorphism
if $0 \to K \to L \to M \to 0$ is actually a short exact sequence
of $\kappa$-vector spaces.
\end{enumerate}
\end{lemma}
\begin{proof}
The significance of taking nonzero symbols in the explicit description
of the map $\gamma_{K \to L \to M}$ is simply that if $(e_1, \ldots, e_l)$
is an admissible sequence in $K$, and
$(\overline{f}_1, \ldots, \overline{f}_m)$ is an admissible sequence in
$M$, then it is not guaranteed that $(e_1, \ldots, e_l, f_1, \ldots, f_m)$
is an admissible sequence in $L$ (where of course $f_i \in L$ signifies
a lift of $\overline{f}_i$). However, if the symbol
$[e_1, \ldots, e_l]$ is nonzero in $\det_\kappa(K)$, then
necessarily $K = \langle e_1, \ldots, e_k\rangle$ (see
proof of Lemma \ref{lemma-dimension-at-most-one}), and
in this case it is true that $(e_1, \ldots, e_k, f_1, \ldots, f_m)$
is an admissible sequence.
Moreover, by the admissible relations of type (b) for $\det_\kappa(L)$
we see that the value of $[e_1, \ldots, e_k, f_1, \ldots, f_m]$ in
$\det_\kappa(L)$ is independent of the choice of the lifts
$f_i$ in this case also. Given this remark, it is clear
that an admissible relation for $e_1, \ldots, e_k$ in $K$
translates into an admissible relation among
$e_1, \ldots, e_k, f_1, \ldots, f_m$ in $L$, and
similarly for an admissible relation among the
$\overline{f}_1, \ldots, \overline{f}_m$.
Thus $\gamma$ defines a linear map of vector spaces as claimed in the lemma.
\medskip\noindent
By Lemma \ref{lemma-determinant-dimension-one} we know
$\det_\kappa(L)$ is generated by any single
symbol $[x_1, \ldots, x_{k + m}]$ such that
$(x_1, \ldots, x_{k + m})$ is an admissible sequence
with $L = \langle x_1, \ldots, x_{k + m}\rangle$. Hence it is
clear that the map $\gamma_{K \to L \to M}$ is surjective and
hence an isomorphism.
\medskip\noindent
Property (1) holds because
\begin{eqnarray*}
& & \det\nolimits_\kappa(v)([e_1, \ldots, e_k, f_1, \ldots, f_m]) \\
& = &
[v(e_1), \ldots, v(e_k), v(f_1), \ldots, v(f_m)] \\
& = &
\gamma_{K' \to L' \to M'}([u(e_1), \ldots, u(e_k)]
\otimes [w(f_1), \ldots, w(f_m)]).
\end{eqnarray*}
Property (2) means that given a symbol
$[\alpha_1, \ldots, \alpha_a]$ generating $\det_\kappa(A)$,
a symbol $[\gamma_1, \ldots, \gamma_c]$ generating $\det_\kappa(C)$,
a symbol $[\zeta_1, \ldots, \zeta_g]$ generating $\det_\kappa(G)$, and
a symbol $[\iota_1, \ldots, \iota_i]$ generating $\det_\kappa(I)$
we have
\begin{eqnarray*}
& & [\alpha_1, \ldots, \alpha_a, \tilde\gamma_1, \ldots, \tilde\gamma_c,
\tilde\zeta_1, \ldots, \tilde\zeta_g, \tilde\iota_1, \ldots, \tilde\iota_i] \\
& = &
(-1)^{cg} [\alpha_1, \ldots, \alpha_a, \tilde\zeta_1, \ldots, \tilde\zeta_g,
\tilde\gamma_1, \ldots, \tilde\gamma_c, \tilde\iota_1, \ldots, \tilde\iota_i]
\end{eqnarray*}
(for suitable lifts $\tilde{x}$ in $E$) in $\det_\kappa(E)$.
This holds because we may use the admissible relations of type (c)
$cg$ times in the following order: move the
$\tilde\zeta_1$ past the elements
$\tilde\gamma_c, \ldots, \tilde\gamma_1$
(allowed since $\mathfrak m\tilde\zeta_1 \subset A$),
then move $\tilde\zeta_2$ past the elements
$\tilde\gamma_c, \ldots, \tilde\gamma_1$
(allowed since $\mathfrak m\tilde\zeta_2 \subset A + R\tilde\zeta_1$),
and so on.
\medskip\noindent
Part (3) of the lemma is obvious.
This finishes the proof.
\end{proof}
\noindent
We can use the maps $\gamma$ of the lemma to define more general maps
$\gamma$ as follows. Suppose that $(R, \mathfrak m, \kappa)$ is a
local ring. Let $M$ be a finite length $R$-module and suppose we
are given a finite filtration (see
Homology, Definition \ref{homology-definition-filtered})
$$
M = F^n \supset F^{n + 1} \supset \ldots \supset F^{m - 1} \supset F^m = 0.
$$
Then there is a canonical isomorphism
$$
\gamma_{(M, F)} :
\bigotimes\nolimits_i \det\nolimits_\kappa(F^i/F^{i + 1})
\longrightarrow
\det\nolimits_\kappa(M)
$$
well defined up to sign(!). One can make the sign explicit either by
giving a well defined order of the terms in the tensor product (starting with
higher indices unfortunately), and by thinking of the target category for
the functor $\det_\kappa$ as the category of
$1$-dimensional super vector spaces. See \cite[Section 1]{determinant}.
\medskip\noindent
Here is another typical result for determinant functors.
It is not hard to show. The tricky part is usually to show the
existence of a determinant functor.
\begin{lemma}
\label{lemma-uniqueness-det}
Let $(R, \mathfrak m, \kappa)$ be any local ring.
The functor
$$
\det\nolimits_\kappa :
\left\{
\begin{matrix}
\text{finite length }R\text{-modules} \\
\text{with isomorphisms}
\end{matrix}
\right\}
\longrightarrow
\left\{
\begin{matrix}
1\text{-dimensional }\kappa\text{-vector spaces} \\
\text{with isomorphisms}
\end{matrix}
\right\}
$$
endowed with the maps $\gamma_{K \to L \to M}$ is characterized by
the following properties
\begin{enumerate}
\item its restriction to the subcategory of modules annihilated
by $\mathfrak m$ is isomorphic to the usual determinant functor
(see Lemma \ref{lemma-compare-det}), and
\item (1), (2) and (3) of Lemma \ref{lemma-det-exact-sequences}
hold.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-determinant-quotient-ring}
Let $(R, \mathfrak m, \kappa)$ be a local ring.
Let $I \subset \mathfrak m$ be an ideal, and set $R' = R/I$.
Let $\det_{R, \kappa}$ denote the determinant functor
on the category $\text{Mod}^f_R$ finite length $R$-modules
and denote $\det_{R', \kappa}$ the determinant on
the category $\text{Mod}^f_{R'}$ of finite length $R'$-modules.
Then $\text{Mod}^f_{R'} \subset \text{Mod}^f_R$ is a full subcategory
and there exists an isomorphism of functors
$$
\det\nolimits_{R, \kappa}|_{\text{Mod}^f_{R'}}
=
\det\nolimits_{R', \kappa}
$$
compatible with the isomorphisms $\gamma_{K \to L \to M}$
for either of these functors.
\end{lemma}
\begin{proof}
This can be shown by using the characterization
of the pair $(\det\nolimits_{R', \kappa}, \gamma)$
in Lemma \ref{lemma-uniqueness-det}.
But really the isomorphism is obtained by mapping a symbol
$[x_1, \ldots, x_l] \in \det\nolimits_{R, \kappa}(M)$
to the corresponding symbol
$[x_1, \ldots, x_l] \in \det\nolimits_{R', \kappa}(M)$
which ``obviously'' works.
\end{proof}
\noindent
Here is a case where we can compute the determinant of a linear map.
In fact there is nothing mysterious about this in any case, see
Example \ref{example-determinant-map} for a random example.
\begin{lemma}
\label{lemma-times-u-determinant}
Let $R$ be a local ring with residue field $\kappa$.
Let $u \in R^*$ be a unit.
Let $M$ be a module of finite length over $R$.
Denote $u_M : M \to M$ the map multiplication by $u$.
Then
$$
\det\nolimits_\kappa(u_M) :
\det\nolimits_\kappa(M)
\longrightarrow
\det\nolimits_\kappa(M)
$$
is multiplication by $\overline{u}^l$ where $l = \text{length}_R(M)$
and $\overline{u} \in \kappa^*$ is the image of $u$.
\end{lemma}
\begin{proof}
Denote $f_M \in \kappa^*$ the element such that
$\det\nolimits_\kappa(u_M) = f_M \text{id}_{\det\nolimits_\kappa(M)}$.
Suppose that $0 \to K \to L \to M \to 0$ is a short
exact sequence of finite $R$-modules. Then we see that
$u_k$, $u_L$, $u_M$ give an isomorphism of short exact sequences.
Hence by Lemma \ref{lemma-det-exact-sequences} (1) we conclude that
$f_K f_M = f_L$.
This means that by induction on length it suffices to prove the
lemma in the case of length $1$ where it is trivial.
\end{proof}
\begin{example}
\label{example-determinant-map}
Consider the local ring $R = \mathbf{Z}_p$.
Set $M = \mathbf{Z}_p/(p^2) \oplus \mathbf{Z}_p/(p^3)$.
Let $u : M \to M$ be the map given by the matrix
$$
u =
\left(
\begin{matrix}
a & b \\
pc & d
\end{matrix}
\right)
$$
where $a, b, c, d \in \mathbf{Z}_p$, and $a, d \in \mathbf{Z}_p^*$.
In this case $\det_\kappa(u)$ equals multiplication by
$a^2d^3 \bmod p \in \mathbf{F}_p^*$. This can easily be seen
by consider the effect of $u$ on the symbol
$[p^2e, pe, pf, e, f]$ where $e = (0 , 1) \in M$ and
$f = (1, 0) \in M$.
\end{example}
\section{Periodic complexes}
\label{section-periodic-complexes}
\noindent
Of course there is a very general notion of periodic complexes.
We can require periodicity of the maps, or periodicity of the objects.
We will add these here as needed. For the moment we only need
the following cases.
\begin{definition}
\label{definition-periodic-complex}
Let $R$ be a ring.
\begin{enumerate}
\item A {\it $2$-periodic complex} over $R$ is given
by a quadruple $(M, N, \varphi, \psi)$ consisting of
$R$-modules $M$, $N$ and $R$-module maps $\varphi : M \to N$,
$\psi : N \to M$ such that
$$
\xymatrix{
\ldots \ar[r] &
M \ar[r]^\varphi &
N \ar[r]^\psi &
M \ar[r]^\varphi &
N \ar[r] & \ldots
}
$$
is a complex. In this setting we define the {\it cohomology modules}
of the complex to be the $R$-modules
$$
H^0(M, N, \varphi, \psi) = \Ker(\varphi)/\Im(\psi)
, \quad\text{and}\quad
H^1(M, N, \varphi, \psi) = \Ker(\psi)/\Im(\varphi).
$$
We say the $2$-periodic complex is {\it exact} if the cohomology
groups are zero.
\item A {\it $(2, 1)$-periodic complex} over $R$ is given
by a triple $(M, \varphi, \psi)$ consisting of an $R$-module $M$ and
$R$-module maps $\varphi : M \to M$, $\psi : M \to M$
such that
$$
\xymatrix{
\ldots \ar[r] &
M \ar[r]^\varphi &
M \ar[r]^\psi &
M \ar[r]^\varphi &
M \ar[r] & \ldots
}
$$
is a complex. Since this is a special case of a $2$-periodic complex
we have its {\it cohomology modules} $H^0(M, \varphi, \psi)$,
$H^1(M, \varphi, \psi)$ and a notion of exactness.
\end{enumerate}
\end{definition}
\noindent
In the following we will use any result proved for $2$-periodic
complexes without further mention for $(2, 1)$-periodic complexes.
It is clear that the collection of $2$-periodic complexes
(resp.\ $(2, 1)$-periodic complexes) forms a category with morphisms
$(f, g) : (M, N, \varphi, \psi) \to (M', N', \varphi', \psi')$
pairs of morphisms $f : M \to M'$ and $g : N \to N'$ such
that $\varphi' \circ f = f \circ \varphi$ and $\psi' \circ g = g \circ \psi$.
In fact it is an abelian category, with kernels and cokernels as in
Homology, Lemma \ref{homology-lemma-cat-chain-abelian}.
Also, note that a special case are the
$(2, 1)$-periodic complexes of the form $(M, 0, \psi)$. In this
special case we have
$$
H^0(M, 0, \psi) = \Coker(\psi)
, \quad\text{and}\quad
H^1(M, 0, \psi) = \Ker(\psi).
$$
\begin{definition}
\label{definition-periodic-length}
Let $R$ be a local ring.
Let $(M, N, \varphi, \psi)$ be a $2$-periodic complex over $R$
whose cohomology groups have finite length over $R$.
In this case we define the {\it multiplicity} of $(M, N, \varphi, \psi)$
to be the integer
$$
e_R(M, N, \varphi, \psi) =
\text{length}_R(H^0(M, N, \varphi, \psi))
-
\text{length}_R(H^1(M, N, \varphi, \psi))