-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathyolo_net.py
206 lines (173 loc) · 11.2 KB
/
yolo_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import numpy as np
import tensorflow as tf
import config as cfg
slim = tf.contrib.slim
class YOLONet(object):
def __init__(self, is_training=True):
self.classes = cfg.CLASSES
self.num_class = len(self.classes)
self.image_size = cfg.IMAGE_SIZE
self.cell_size = cfg.CELL_SIZE
self.boxes_per_cell = cfg.BOXES_PER_CELL
self.output_size = (self.cell_size * self.cell_size) * (self.num_class + self.boxes_per_cell * 5)
self.scale = 1.0 * self.image_size / self.cell_size
self.boundary1 = self.cell_size * self.cell_size * self.num_class
self.boundary2 = self.boundary1 + self.cell_size * self.cell_size * self.boxes_per_cell
self.object_scale = cfg.OBJECT_SCALE
self.noobject_scale = cfg.NOOBJECT_SCALE
self.class_scale = cfg.CLASS_SCALE
self.coord_scale = cfg.COORD_SCALE
self.learning_rate = cfg.LEARNING_RATE
self.batch_size = cfg.BATCH_SIZE
self.alpha = cfg.ALPHA
self.offset = np.transpose(np.reshape(np.array(
[np.arange(self.cell_size)] * self.cell_size * self.boxes_per_cell),
(self.boxes_per_cell, self.cell_size, self.cell_size)), (1, 2, 0))
self.images = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 3], name='images')
self.logits = self.build_network(self.images, num_outputs=self.output_size, alpha=self.alpha, is_training=is_training)
if is_training:
self.labels = tf.placeholder(tf.float32, [None, self.cell_size, self.cell_size, 5 + self.num_class])
self.loss_layer(self.logits, self.labels)
self.total_loss = tf.losses.get_total_loss()
tf.summary.scalar('total_loss', self.total_loss)
def build_network(self,
images,
num_outputs,
alpha,
keep_prob=0.5,
is_training=True,
scope='yolo'):
with tf.variable_scope(scope):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=leaky_relu(alpha),
weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, 0]]), name='pad_1')
net = slim.conv2d(net, 64, 7, 2, padding='VALID', scope='conv_2')
net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_3')
net = slim.conv2d(net, 192, 3, scope='conv_4')
net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_5')
net = slim.conv2d(net, 128, 1, scope='conv_6')
net = slim.conv2d(net, 256, 3, scope='conv_7')
net = slim.conv2d(net, 256, 1, scope='conv_8')
net = slim.conv2d(net, 512, 3, scope='conv_9')
net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_10')
net = slim.conv2d(net, 256, 1, scope='conv_11')
net = slim.conv2d(net, 512, 3, scope='conv_12')
net = slim.conv2d(net, 256, 1, scope='conv_13')
net = slim.conv2d(net, 512, 3, scope='conv_14')
net = slim.conv2d(net, 256, 1, scope='conv_15')
net = slim.conv2d(net, 512, 3, scope='conv_16')
net = slim.conv2d(net, 256, 1, scope='conv_17')
net = slim.conv2d(net, 512, 3, scope='conv_18')
net = slim.conv2d(net, 512, 1, scope='conv_19')
net = slim.conv2d(net, 1024, 3, scope='conv_20')
net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_21')
net = slim.conv2d(net, 512, 1, scope='conv_22')
net = slim.conv2d(net, 1024, 3, scope='conv_23')
net = slim.conv2d(net, 512, 1, scope='conv_24')
net = slim.conv2d(net, 1024, 3, scope='conv_25')
net = slim.conv2d(net, 1024, 3, scope='conv_26')
net = tf.pad(net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]), name='pad_27')
net = slim.conv2d(net, 1024, 3, 2, padding='VALID', scope='conv_28')
net = slim.conv2d(net, 1024, 3, scope='conv_29')
net = slim.conv2d(net, 1024, 3, scope='conv_30')
net = tf.transpose(net, [0, 3, 1, 2], name='trans_31')
net = slim.flatten(net, scope='flat_32')
net = slim.fully_connected(net, 512, scope='fc_33')
net = slim.fully_connected(net, 4096, scope='fc_34')
net = slim.dropout(net, keep_prob=keep_prob,
is_training=is_training, scope='dropout_35')
net = slim.fully_connected(net, num_outputs,
activation_fn=None, scope='fc_36')
return net
def calc_iou(self, boxes1, boxes2, scope='iou'):
"""calculate ious
Args:
boxes1: 4-D tensor [CELL_SIZE, CELL_SIZE, BOXES_PER_CELL, 4] ====> (x_center, y_center, w, h)
boxes2: 1-D tensor [CELL_SIZE, CELL_SIZE, BOXES_PER_CELL, 4] ===> (x_center, y_center, w, h)
Return:
iou: 3-D tensor [CELL_SIZE, CELL_SIZE, BOXES_PER_CELL]
"""
with tf.variable_scope(scope):
boxes1 = tf.stack([boxes1[:, :, :, :, 0] - boxes1[:, :, :, :, 2] / 2.0,
boxes1[:, :, :, :, 1] - boxes1[:, :, :, :, 3] / 2.0,
boxes1[:, :, :, :, 0] + boxes1[:, :, :, :, 2] / 2.0,
boxes1[:, :, :, :, 1] + boxes1[:, :, :, :, 3] / 2.0])
boxes1 = tf.transpose(boxes1, [1, 2, 3, 4, 0])
boxes2 = tf.stack([boxes2[:, :, :, :, 0] - boxes2[:, :, :, :, 2] / 2.0,
boxes2[:, :, :, :, 1] - boxes2[:, :, :, :, 3] / 2.0,
boxes2[:, :, :, :, 0] + boxes2[:, :, :, :, 2] / 2.0,
boxes2[:, :, :, :, 1] + boxes2[:, :, :, :, 3] / 2.0])
boxes2 = tf.transpose(boxes2, [1, 2, 3, 4, 0])
# calculate the left up point & right down point
lu = tf.maximum(boxes1[:, :, :, :, :2], boxes2[:, :, :, :, :2])
rd = tf.minimum(boxes1[:, :, :, :, 2:], boxes2[:, :, :, :, 2:])
# intersection
intersection = tf.maximum(0.0, rd - lu)
inter_square = intersection[:, :, :, :, 0] * intersection[:, :, :, :, 1]
# calculate the boxs1 square and boxs2 square
square1 = (boxes1[:, :, :, :, 2] - boxes1[:, :, :, :, 0]) * \
(boxes1[:, :, :, :, 3] - boxes1[:, :, :, :, 1])
square2 = (boxes2[:, :, :, :, 2] - boxes2[:, :, :, :, 0]) * \
(boxes2[:, :, :, :, 3] - boxes2[:, :, :, :, 1])
union_square = tf.maximum(square1 + square2 - inter_square, 1e-10)
return tf.clip_by_value(inter_square / union_square, 0.0, 1.0)
def loss_layer(self, predicts, labels, scope='loss_layer'):
with tf.variable_scope(scope):
predict_classes = tf.reshape(predicts[:, :self.boundary1], [self.batch_size, self.cell_size, self.cell_size, self.num_class])
predict_scales = tf.reshape(predicts[:, self.boundary1:self.boundary2], [self.batch_size, self.cell_size, self.cell_size, self.boxes_per_cell])
predict_boxes = tf.reshape(predicts[:, self.boundary2:], [self.batch_size, self.cell_size, self.cell_size, self.boxes_per_cell, 4])
response = tf.reshape(labels[:, :, :, 0], [self.batch_size, self.cell_size, self.cell_size, 1])
boxes = tf.reshape(labels[:, :, :, 1:5], [self.batch_size, self.cell_size, self.cell_size, 1, 4])
boxes = tf.tile(boxes, [1, 1, 1, self.boxes_per_cell, 1]) / self.image_size
classes = labels[:, :, :, 5:]
offset = tf.constant(self.offset, dtype=tf.float32)
offset = tf.reshape(offset, [1, self.cell_size, self.cell_size, self.boxes_per_cell])
offset = tf.tile(offset, [self.batch_size, 1, 1, 1])
predict_boxes_tran = tf.stack([(predict_boxes[:, :, :, :, 0] + offset) / self.cell_size,
(predict_boxes[:, :, :, :, 1] + tf.transpose(offset, (0, 2, 1, 3))) / self.cell_size,
tf.square(predict_boxes[:, :, :, :, 2]),
tf.square(predict_boxes[:, :, :, :, 3])])
predict_boxes_tran = tf.transpose(predict_boxes_tran, [1, 2, 3, 4, 0])
iou_predict_truth = self.calc_iou(predict_boxes_tran, boxes)
# calculate I tensor [BATCH_SIZE, CELL_SIZE, CELL_SIZE, BOXES_PER_CELL]
object_mask = tf.reduce_max(iou_predict_truth, 3, keep_dims=True)
object_mask = tf.cast((iou_predict_truth >= object_mask), tf.float32) * response
# calculate no_I tensor [CELL_SIZE, CELL_SIZE, BOXES_PER_CELL]
noobject_mask = tf.ones_like(object_mask, dtype=tf.float32) - object_mask
boxes_tran = tf.stack([boxes[:, :, :, :, 0] * self.cell_size - offset,
boxes[:, :, :, :, 1] * self.cell_size - tf.transpose(offset, (0, 2, 1, 3)),
tf.sqrt(boxes[:, :, :, :, 2]),
tf.sqrt(boxes[:, :, :, :, 3])])
boxes_tran = tf.transpose(boxes_tran, [1, 2, 3, 4, 0])
# class_loss
class_delta = response * (predict_classes - classes)
class_loss = tf.reduce_mean(tf.reduce_sum(tf.square(class_delta), axis=[1, 2, 3]), name='class_loss') * self.class_scale
# object_loss
object_delta = object_mask * (predict_scales - iou_predict_truth)
object_loss = tf.reduce_mean(tf.reduce_sum(tf.square(object_delta), axis=[1, 2, 3]), name='object_loss') * self.object_scale
# noobject_loss
noobject_delta = noobject_mask * predict_scales
noobject_loss = tf.reduce_mean(tf.reduce_sum(tf.square(noobject_delta), axis=[1, 2, 3]), name='noobject_loss') * self.noobject_scale
# coord_loss
coord_mask = tf.expand_dims(object_mask, 4)
boxes_delta = coord_mask * (predict_boxes - boxes_tran)
coord_loss = tf.reduce_mean(tf.reduce_sum(tf.square(boxes_delta), axis=[1, 2, 3, 4]), name='coord_loss') * self.coord_scale
tf.losses.add_loss(class_loss)
tf.losses.add_loss(object_loss)
tf.losses.add_loss(noobject_loss)
tf.losses.add_loss(coord_loss)
tf.summary.scalar('class_loss', class_loss)
tf.summary.scalar('object_loss', object_loss)
tf.summary.scalar('noobject_loss', noobject_loss)
tf.summary.scalar('coord_loss', coord_loss)
tf.summary.histogram('boxes_delta_x', boxes_delta[:, :, :, :, 0])
tf.summary.histogram('boxes_delta_y', boxes_delta[:, :, :, :, 1])
tf.summary.histogram('boxes_delta_w', boxes_delta[:, :, :, :, 2])
tf.summary.histogram('boxes_delta_h', boxes_delta[:, :, :, :, 3])
tf.summary.histogram('iou', iou_predict_truth)
def leaky_relu(alpha):
def op(inputs):
return tf.maximum(alpha * inputs, inputs, name='leaky_relu')
return op