-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathdbscan.py
37 lines (27 loc) · 1.3 KB
/
dbscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""Clustering using DBScan"""
import datatable as dt
import numpy as np
import sklearn as sk
from h2oaicore.models import CustomUnsupervisedModel
from h2oaicore.transformer_utils import CustomUnsupervisedTransformer
class DBScanTransformer(CustomUnsupervisedTransformer):
@staticmethod
def get_default_properties():
return dict(col_type="numeric", min_cols=1, max_cols="all")
@staticmethod
def get_parameter_choices():
return dict(eps=[0.1, 0.5, 1, 2, 5], leaf_size=[1, 5, 10, 25, 100])
def __init__(self, eps=None, leaf_size=None, **kwargs):
super().__init__(**kwargs)
self.eps = eps
self.leaf_size = leaf_size
def fit_transform(self, X: dt.Frame, y: np.array = None):
self.model = sk.cluster.DBSCAN(eps=self.eps, min_samples=2, leaf_size=self.leaf_size)
X = X.to_pandas().fillna(0)
return self.model.fit_predict(X)
def transform(self, X: dt.Frame, y: np.array = None):
return self.fit_transform(X)
class DBScanModel(CustomUnsupervisedModel):
_included_pretransformers = ['StdFreqPreTransformer'] # standardize numericals, frequency encode categoricals
_included_transformers = ["DBScanTransformer"]
_included_scorers = ['SilhouetteScorer', 'CalinskiHarabaszScorer', 'DaviesBouldinScorer'] # from DAI built-in