Skip to content

How to use the known position of peaks for peak fitting? #67

Answered by georgievgeorgi
nicocopez asked this question in Q&A
Discussion options

You must be logged in to vote

This example plots manually created candidates.

from ramanchada2.misc.types import ListPeakCandidateMultiModel
cand = ListPeakCandidateMultiModel.validate([
    {'base_slope': -.1, 'base_intersept': 100, 'boundaries': [0, 300], 'peaks': [
        {'amplitude': 100, 'position': 50, 'sigma': 30, 'skew': 0},
        {'amplitude': 10, 'position': 150, 'sigma': 30, 'skew': .5},
        {'amplitude': 200, 'position': 250, 'sigma': 30, 'skew': -.5},
    ], },
    {'base_slope': .1, 'base_intersept': -50, 'boundaries': [500, 800], 'peaks': [
        {'amplitude': 100, 'position':550, 'sigma': 30, 'skew': 0},
        {'amplitude': 10, 'position': 650, 'sigma': 30, 'skew': .5},
        {'amplitude': 

Replies: 2 comments 2 replies

Comment options

You must be logged in to vote
1 reply
@nicocopez
Comment options

nicocopez Mar 6, 2023
Maintainer Author

Comment options

You must be logged in to vote
1 reply
@georgievgeorgi
Comment options

Answer selected by nicocopez
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Category
Q&A
Labels
None yet
2 participants