-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathUNM_parse_QC_txt_file.m
47 lines (38 loc) · 1.39 KB
/
UNM_parse_QC_txt_file.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function qc_ds = UNM_parse_QC_txt_file( sitecode, year )
% UNM_PARSE_QC_TXT_FILE - parse tab-delimited ASCII QC file to matlab dataset
%
% The QC file is created by UNM_RemoveBadData (or UNM_RemoveBadData_pre2012).
%
% USAGE:
% qc_ds = UNM_parse_QC_txt_file( sitecode, year );
%
% INPUTS
% sitecode: UNM_sites object; specifies the site to show
% year: four-digit year: specifies the year to show
%
% OUTPUTS:
% ds_qc: dataset array; the data from the QC file
%
% SEE ALSO
% dataset, UNM_RemoveBadData, UNM_RemoveBadData_pre2012
%
% author: Timothy W. Hilton, UNM, April 2012
site = get_site_name( sitecode );
qcfile = fullfile( get_site_directory( sitecode ), ...
'processed_flux', ...
sprintf( '%s_flux_all_%d_qc.txt', site, year ) );
[ ~, fname, ext ] = fileparts( qcfile );
fprintf( 'reading %s... ', qcfile );
% count the number of columns in the file - this varies between sites
fid = fopen( qcfile, 'r' );
header_line = fgetl( fid );
n_cols = numel( regexp( header_line, '\t', 'split' ) );
fmt = repmat( '%f', 1, n_cols );
%fmt = '%f';
qc_ds = dataset( 'File', qcfile, ...
'Delimiter', '\t', ...
'format', fmt );
qc_ds = replace_badvals( qc_ds, [-9999], 1e-6 );
qc_ds.timestamp = datenum( qc_ds.year, qc_ds.month, qc_ds.day, ...
qc_ds.hour, qc_ds.minute, qc_ds.second );
fprintf( 'done\n');