-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
93 lines (67 loc) · 3.08 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(grattantheme)
base_coefs <- c("NAIRU")
```
# Recreating McKell Institute's super-wages model
This repo attempts to recreate the McKell Institute's super-wages model presented in their 2019 research paper [_'Does higher superannuation reduce workers’ wages?'_](https://mckellinstitute.org.au/app/uploads/Does-higher-superannuation-reduce-wages.pdf).
It uses the statistical package R and publicly-available data. Three R scripts are used in order:
1. `01_get_data.R`: Retrive and tidy data from the ABS, OECD and RBA.
2. `02_prepare_data.R`: Combine data and generate variables for the model set.
3. `03_run_regressions.R`: Fit four models on each of AWOTE, AENA (wages) and AENA (social).
```{r, message = FALSE, warning = FALSE}
source("R/01_get_data.R")
source("R/02_prepare_data.R")
source("R/03_run_regressions.R")
```
They compile relevant data and produce tables of regression results for four model specifications.
The results from these regressions are summarised in the charts below.
**Model 1: Recreation of McKell models**
```{r, echo = FALSE}
plot_model1 <- plot_summs(mck_awote_model, mck_aena_wages_model, mck_aena_social_model,
model.names = c("AWOTE",
"AENA\n(wages)",
"AENA\n(social)"),
colors = c(grattan_red, grattan_orange, grattan_yellow))
plot_model1
```
**Model 2: McKell model with pre-SG award**
```{r, echo = FALSE}
plot_model2 <- plot_summs(mck_awote_model_with_award2,
mck_aena_wages_model_with_award2,
mck_aena_social_model_with_award2,
model.names = c("AWOTE",
"AENA\n(wages)",
"AENA\n(social)"),
colors = c(grattan_red, grattan_orange, grattan_yellow))
plot_model2
```
**Model 3: McKell model with lagged SG one-quarter change**
```{r, echo = FALSE}
plot_model3 <- plot_summs(mck_awote_d1_lag2_model,
mck_aena_wages_d1_lag2_model,
mck_aena_social_d1_lag2_model,
model.names = c("AWOTE",
"AENA\n(wages)",
"AENA\n(social)"),
colors = c(grattan_red, grattan_orange, grattan_yellow))
plot_model3
```
**Model 4: The previous model with RBA specifications**
```{r, echo = FALSE}
plot_model4 <- plot_summs(rba_awote_model,
rba_aena_wages_model,
rba_aena_social_model,
model.names = c("AWOTE",
"AENA\n(wages)",
"AENA\n(social)"),
colors = c(grattan_red, grattan_orange, grattan_yellow))
plot_model4
```