-
Notifications
You must be signed in to change notification settings - Fork 8
/
test_tinyface.py
162 lines (126 loc) · 5.3 KB
/
test_tinyface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
os.chdir(os.path.dirname(os.path.abspath(__file__)))
import torch.utils.data
from torch.nn import DataParallel
from model.backbone import CBAMResNet
import torchvision.transforms as transforms
import argparse
import subprocess
import torch
import numpy as np
from tqdm import tqdm
import argparse
import pandas as pd
from evaluation import tinyface_helper
# DataLoader
import cv2
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
class ListDataset(Dataset):
def __init__(self, img_list):
super(ListDataset, self).__init__()
self.img_list = img_list
self.transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
def __len__(self):
return len(self.img_list)
def __getitem__(self, idx):
# Load Image
image_path = self.img_list[idx]
img = cv2.imread(image_path)
img = img[:, :, :3]
# To Tensor
img = Image.fromarray(img)
img = self.transform(img)
return img, idx
def prepare_dataloader(img_list, batch_size, num_workers=0):
image_dataset = ListDataset(img_list)
dataloader = DataLoader(image_dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=num_workers)
return dataloader
# Evaluation
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def infer(model, dataloader, use_flip_test):
features = []
with torch.no_grad():
for images, idx in tqdm(dataloader):
images = images.to('cuda')
feature = model(images)
if use_flip_test:
fliped_images = torch.flip(images, dims=[3])
flipped_feature = model(fliped_images.to("cuda"))
fused_feature = (feature + flipped_feature) / 2
features.append(fused_feature.cpu().numpy())
else:
features.append(feature.cpu().numpy())
features = np.concatenate(features, axis=0)
return features
def load_model(args):
# gpu init
multi_gpus = False
if len(args.gpus.split(',')) > 1:
multi_gpus = True
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
device = torch.device('cuda')
# define backbone and margin layer
net = CBAMResNet(50, feature_dim=512, mode=args.mode)
net.load_state_dict(torch.load(args.checkpoint_path)['net_state_dict'])
if multi_gpus:
net = DataParallel(net).to(device)
else:
net = net.to(device)
net.eval()
return net
def calc_accuracy(tinyface_test, probe, gallery, do_norm=True):
if do_norm:
probe = probe / np.linalg.norm(probe, ord=2, axis=1).reshape(-1,1)
gallery = gallery / np.linalg.norm(gallery, ord=2, axis=1).reshape(-1,1)
# Similarity
result = (probe @ gallery.T)
index = np.argsort(-result, axis=1)
p_l = np.array(tinyface_test.probe_labels)
g_l = np.array(tinyface_test.gallery_labels)
acc_list = []
for rank in [1, 5, 10, 20]:
correct = 0
for ix, probe_label in enumerate(p_l):
pred_label = g_l[index[ix][:rank]]
if probe_label in pred_label:
correct += 1
acc = correct / len(p_l)
acc_list += [acc * 100]
print(acc_list)
pd.DataFrame({'rank':[1, 5, 10, 20], 'values':acc_list}).to_csv(os.path.join(args.save_dir, 'tinyface_result.csv'), index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='tinyface')
parser.add_argument('--tinyface_dir', default='Face/tinyface/aligned_pad_0.1_pad_high/')
parser.add_argument('--gpus', default='1', type=str)
parser.add_argument('--batch_size', default=512, type=int, help='')
parser.add_argument('--mode', type=str, default='cbam', help='attention type')
parser.add_argument('--save_dir', type=str, default='result/')
parser.add_argument('--checkpoint_path', type=str, default='checkpoint/A-SKD/last_net.ckpt', help='scale size')
parser.add_argument('--use_flip_test', type=str2bool, default='True')
args = parser.parse_args()
os.makedirs(args.save_dir, exist_ok=True)
# load model
model = load_model(args)
tinyface_test = tinyface_helper.TinyFaceTest(tinyface_root=args.tinyface_dir)
probe_loader = prepare_dataloader(tinyface_test.probe_paths, args.batch_size, num_workers=8)
gallery_loader = prepare_dataloader(tinyface_test.gallery_paths, args.batch_size, num_workers=8)
print('probe images : {}'.format(len(tinyface_test.probe_paths)))
print('gallery images : {}'.format(len(tinyface_test.gallery_paths)))
probe_features = infer(model, probe_loader, use_flip_test=args.use_flip_test)
gallery_features = infer(model, gallery_loader, use_flip_test=args.use_flip_test)
print('------------------ Start -------------------')
calc_accuracy(tinyface_test, probe_features, gallery_features, do_norm=True)
print('------------------- End ---------------------')