forked from engineer1982/Machine-Learning-Lottery-Prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmega.py
97 lines (68 loc) · 3.23 KB
/
mega.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import h5py
import pandas as pd
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
# for each game (draw), we have 60 balls numbered from 1 to 60 inside a bowl. Then, 6 of them are chosen and the result is shown. eg: 14-31-32-05-59-41
# for this purpose, we will try to predict just the first number
# functions
def ldata(m,t):
# load the data from all the games happened until 31/12/2017
# m is the number of training examples ; t is the number of test examples
# the output is extracting just the first number of the each game.
Location = r'datasets\jogo.xlsx'
jogo = pd.read_excel(Location)
dataset = {}
X_train = np.zeros((4,m-t))
Y_train = np.zeros((60,m-t))
X_test = np.zeros((4,t))
Y_test = np.zeros((60,t))
X_train[0][:] = jogo.values[0][0:m-t] #number of the game
X_train[1][:] = jogo.values[3][:m-t] # day of the game
X_train[2][:] = jogo.values[4][0:m-t] # month of the game
X_train[3][:] = jogo.values[5][0:m-t] #year of the game
X_train = X_train.T;
X_test[0][:] = jogo.values[0][m-t:m]
X_test[1][:] = jogo.values[3][m-t:m]
X_test[2][:] = jogo.values[4][m-t:m]
X_test[3][:] = jogo.values[5][m-t:m]
X_test = X_test.T;
Y_train = jogo.values[7][0:m-t]; #the number of the first ball of the game
Y_train = Y_train.T;
Y_train = Y_train.astype(int)
Y_train = keras.utils.to_categorical(Y_train, num_classes=61) #turn it into on hot vector
Y_test = jogo.values[7][m-t:m];
Y_test = Y_test.T;
Y_test = Y_test.astype(int)
Y_test = keras.utils.to_categorical(Y_test, num_classes=61)
dataset["X_train"] = X_train
dataset["X_test"] = X_test
dataset["Y_train"] = Y_train
dataset["Y_test"] = Y_test
return dataset
def modelo(m, t, epoc, bat, v):
# m is the number of training examples ; t is the number of test examples
# epoc for epochs; bat for batches;
# v for verbose in model fit. (0 = no progress is shown; 1 = progress bar; 2 = shows just the final loss and accuracy for each epoch)
#testing the model, I run: m1, l1, c1, y1 = modelo(1900, 10, 10, 32,2);
dados = ldata(m, t);
i_shape = dados["X_train"].shape[1] #input shape
o_shape = dados["Y_train"].shape[1] #output shape
x_train = dados['X_train']
y_train = dados['Y_train']
x_test = dados['X_test']
y_test = dados['Y_test']
model = Sequential()
model.add(Dense(150, activation='relu', input_dim=i_shape))
#model.add(Dropout(0.5))
model.add(Dense(100, activation='relu'))
#model.add(Dropout(0.5))
model.add(Dense(80, activation='relu'))
#model.add(Dropout(0.5))
model.add(Dense(o_shape, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=epoc, batch_size=bat, verbose=v, validation_split=0.1, shuffle=True)
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=bat)
classes = model.predict(x_test, batch_size=bat)
return model, loss_and_metrics, classes, y_test