-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathUFormer.py
633 lines (509 loc) · 24.4 KB
/
UFormer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from data import melfuture
from uyghur import uyghur_latin
class UFormer(nn.Module):
def __init__(self, num_features_input, load_best=False):
super(UFormer, self).__init__()
num_layers = 2 #'Number of layers'
num_heads = 8 #'Number of heads'
dim_model = 512 #'Model dimension'
dim_key = 64 #'Key dimension'
dim_value = 64 #'Value dimension'
dim_inner = 1024 #'Inner dimension'
dim_emb = 512 #'Embedding dimension'
src_max_len = 2500 #'Source max length'
tgt_max_len = 1000 #'Target max length'
dropout = 0.1
emb_trg_sharing = False
self.flayer = W2Llayer(num_features_input)
self.encoder = Encoder(num_layers, num_heads=num_heads, dim_model=dim_model, dim_key=dim_key, dim_value=dim_value, dim_inner=dim_inner, src_max_length=src_max_len, dropout=dropout)
self.decoder = Decoder(num_layers=num_layers, num_heads=num_heads, dim_emb=dim_emb, dim_model=dim_model, dim_inner=dim_inner, dim_key=dim_key, dim_value=dim_value, trg_max_length=tgt_max_len, dropout=dropout, emb_trg_sharing=emb_trg_sharing)
self.ctcOut = None
self.ctcLen = None
self.checkpoint = "results/UFormer"
self._load(load_best)
print(f'The model has {self.parameters_count(self):,} trainable parameters')
print(f' Feature has {self.parameters_count(self.flayer):,} trainable parameters')
print(f' Encoder has {self.parameters_count(self.encoder):,} trainable parameters')
print(f' Decoder has {self.parameters_count(self.decoder):,} trainable parameters')
def forward(self, padded_input, input_lengths, padded_target):
padded_input,self.ctcOut, self.ctcLen = self.flayer(padded_input,input_lengths)
#input must be #B x T x F format
encoder_padded_outputs, _ = self.encoder(padded_input, self.ctcLen) # BxTxH or #B x T x F
seq_in_pad, gold = self.preprocess(padded_target)
pred = self.decoder(seq_in_pad, encoder_padded_outputs, self.ctcLen)
return pred, gold
def decode(self, pred):
_, pred = torch.topk(pred, 1, dim=2)
preds = pred.squeeze(2)
strs_pred = [uyghur_latin.decode(pred_id) for pred_id in preds]
return strs_pred
def predict(self,wavfile, device):
self.eval()
spec = melfuture(wavfile).unsqueeze(0).to(device)
spec_len = torch.tensor([spec.shape[2]], dtype=torch.int)
padded_input,self.ctcOut, self.ctcLen = self.flayer(spec,spec_len)
encoder_padded_outputs, _ = self.encoder(padded_input, self.ctcLen) # BxTxH or #B x T x F
prestr = self.decoder.greedy_search(encoder_padded_outputs)
return prestr
def pad_list(self, xs, pad_value):
# From: espnet/src/nets/e2e_asr_th.py: pad_list()
n_batch = len(xs)
max_len = max(x.size(0) for x in xs)
pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)
for i in range(n_batch):
pad[i, :xs[i].size(0)] = xs[i]
return pad
def preprocess(self, padded_input):
"""
Add SOS TOKEN and EOS TOKEN into padded_input
"""
seq = [y[y != uyghur_latin.pad_idx] for y in padded_input]
eos = seq[0].new([uyghur_latin.eos_idx])
sos = seq[0].new([uyghur_latin.sos_idx])
seq_in = [torch.cat([sos, y], dim=0) for y in seq]
seq_out = [torch.cat([y, eos], dim=0) for y in seq]
seq_in_pad = self.pad_list(seq_in, uyghur_latin.pad_idx)
seq_out_pad = self.pad_list(seq_out, uyghur_latin.pad_idx)
assert seq_in_pad.size() == seq_out_pad.size()
return seq_in_pad, seq_out_pad
def parameters_count(self, model):
sum_par = sum(p.numel() for p in model.parameters() if p.requires_grad)
return sum_par
def _load(self, load_best=False):
path = None
if load_best == True and os.path.exists(self.checkpoint + '_best.pth'):
path = path = self.checkpoint + '_best.pth'
elif os.path.exists(self.checkpoint + '_last.pth'):
path = self.checkpoint + '_last.pth'
if path is not None:
pack = torch.load(path, map_location='cpu')
self.load_state_dict(pack['st_dict'])
self.trained_epochs = pack['epoch']
self.best_cer = pack.get('BCER', 1.0)
print(f' Model loaded: {path}')
print(f' Best CER: {self.best_cer:.2%}')
print(f' Trained: {self.trained_epochs} epochs')
def save(self, epoch, best = False):
pack = {
'st_dict':self.state_dict(),
'epoch':epoch,
'BCER':self.best_cer
}
if best == True:
path = path = self.checkpoint + '_best.pth'
else:
path = path = self.checkpoint + '_last.pth'
torch.save(pack, path)
class W2Llayer(nn.Module):
"""
Feature extraction layer
"""
def __init__(self,num_features_input,load_best=False):
super(W2Llayer, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=(41, 11), stride=(2, 1), padding=(20, 5), bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=(21, 11), stride=(2, 2), padding=(10, 5),bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
)
self.lstm1 = nn.GRU(1024, 256, num_layers=1 , batch_first=True, bidirectional=True)
self.cnn1 = nn.Sequential(
nn.Conv1d(256, 256, 11, 1, 5,bias=False),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Dropout(0.2),
ResB(256,11,5,0.2),
ResB(256,11,5,0.2),
ResB(256,11,5,0.2),
ResB(256,11,5,0.2)
)
self.lstm2 = nn.GRU(256, 384, num_layers=1 , batch_first=True, bidirectional=True)
self.cnn2 = nn.Sequential(
ResB(384,13,6,0.2),
ResB(384,13,6,0.2),
ResB(384,13,6,0.2),
nn.Conv1d(384, 512, 17, 1,8,bias=False),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Dropout(0.2),
ResB(512,17,8,0.3),
ResB(512,17,8,0.3),
nn.Conv1d(512, 512, 1, 1,bias=False),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Dropout(0.3),
ResB(512,1,0,0.0),
)
self.outlayer = nn.Conv1d(512, uyghur_latin.vocab_size, 1, 1)
self.softMax = nn.LogSoftmax(dim=1)
def forward(self, x, lengths):
out_lens = lengths//2
x.unsqueeze_(1)
out = self.conv(x)
b, c, h, w = out.size()
out = out.view(b, c*h, w).contiguous() #.permute(0,2,1)
out = out.permute(0,2,1)
out, _ = self.lstm1(out)
out = (out[:, :, :self.lstm1.hidden_size] + out[:, :, self.lstm1.hidden_size:]).contiguous()
out = self.cnn1(out.permute(0,2,1))
out = out.permute(0,2,1)
out,_ = self.lstm2(out)
out = (out[:, :, :self.lstm2.hidden_size] + out[:, :, self.lstm2.hidden_size:]).contiguous()
out = self.cnn2(out.permute(0,2,1))
outctc = self.softMax(self.outlayer(out))
return out.contiguous().permute(0,2,1), outctc, out_lens
class ResB(nn.Module):
def __init__(self, num_filters, kernel, pad, d = 0.4):
super().__init__()
self.conv = nn.Sequential(
nn.Conv1d(num_filters, num_filters, kernel_size = kernel, stride = 1 , padding=pad, bias=False),
nn.BatchNorm1d(num_filters)
)
self.relu = nn.ReLU(inplace=True)
self.bn = nn.BatchNorm1d(num_filters)
self.drop =nn.Dropout(d)
def forward(self, x):
identity = x
out = self.conv(x)
out += identity
out = self.bn(out)
out = self.relu(out)
out = self.drop(out)
return out
class Encoder(nn.Module):
"""
Encoder Transformer class
"""
def __init__(self, num_layers, num_heads, dim_model, dim_key, dim_value, dim_inner, dropout=0.1, src_max_length=2500):
super(Encoder, self).__init__()
self.num_layers = num_layers
self.num_heads = num_heads
self.dim_model = dim_model
self.dim_key = dim_key
self.dim_value = dim_value
self.dim_inner = dim_inner
self.src_max_length = src_max_length
self.dropout = nn.Dropout(dropout)
self.dropout_rate = dropout
self.positional_encoding = PositionalEncoding(dim_model, src_max_length)
self.layers = nn.ModuleList([
EncoderLayer(num_heads, dim_model, dim_inner, dim_key, dim_value, dropout=dropout) for _ in range(num_layers)
])
def forward(self, padded_input, input_lengths):
"""
args:
padded_input: B x T x D
input_lengths: B
return:
output: B x T x H
"""
encoder_self_attn_list = []
# Prepare masks
non_pad_mask = get_non_pad_mask(padded_input, input_lengths=input_lengths) # B x T x D
seq_len = padded_input.size(1)
self_attn_mask = get_attn_pad_mask(padded_input, input_lengths, seq_len) # B x T x T
pos = self.positional_encoding(padded_input)
encoder_output = padded_input + pos
for layer in self.layers:
encoder_output, self_attn = layer(encoder_output, non_pad_mask=non_pad_mask, self_attn_mask=self_attn_mask)
encoder_self_attn_list += [self_attn]
return encoder_output, encoder_self_attn_list
class EncoderLayer(nn.Module):
"""
Encoder Layer Transformer class
"""
def __init__(self, num_heads, dim_model, dim_inner, dim_key, dim_value, dropout=0.1):
super(EncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(num_heads, dim_model, dim_key, dim_value, dropout=dropout)
self.pos_ffn = PositionwiseFeedForwardWithConv(dim_model, dim_inner, dropout=dropout)
def forward(self, enc_input, non_pad_mask=None, self_attn_mask=None):
enc_output, self_attn = self.self_attn(enc_input, enc_input, enc_input, mask=self_attn_mask)
enc_output *= non_pad_mask
enc_output = self.pos_ffn(enc_output)
enc_output *= non_pad_mask
return enc_output, self_attn
class Decoder(nn.Module):
"""
Decoder Layer Transformer class
"""
def __init__(self, num_layers, num_heads, dim_emb, dim_model, dim_inner, dim_key, dim_value, dropout=0.1, trg_max_length=1000, emb_trg_sharing=False):
super(Decoder, self).__init__()
self.num_trg_vocab = uyghur_latin.vocab_size
self.num_layers = num_layers
self.num_heads = num_heads
self.dim_emb = dim_emb
self.dim_model = dim_model
self.dim_inner = dim_inner
self.dim_key = dim_key
self.dim_value = dim_value
self.dropout_rate = dropout
self.emb_trg_sharing = emb_trg_sharing
self.trg_max_length = trg_max_length
self.trg_embedding = nn.Embedding(self.num_trg_vocab, dim_emb, padding_idx=uyghur_latin.pad_idx)
self.positional_encoding = PositionalEncoding(dim_model, trg_max_length)
self.dropout = nn.Dropout(dropout)
self.layers = nn.ModuleList([
DecoderLayer(dim_model, dim_inner, num_heads,dim_key, dim_value, dropout=dropout)
for _ in range(num_layers)
])
self.output_linear = nn.Linear(dim_model, self.num_trg_vocab, bias=False)
nn.init.xavier_normal_(self.output_linear.weight)
if emb_trg_sharing:
self.output_linear.weight = self.trg_embedding.weight
self.x_logit_scale = (dim_model ** -0.5)
else:
self.x_logit_scale = 1.0
def forward(self, seq_in_pad, encoder_padded_outputs, encoder_input_lengths):
"""
args:
padded_input: B x T
encoder_padded_outputs: B x T x H
encoder_input_lengths: B
returns:
pred: B x T x vocab
gold: B x T
"""
decoder_self_attn_list, decoder_encoder_attn_list = [], []
# Prepare masks
non_pad_mask = get_non_pad_mask(seq_in_pad, pad_idx=uyghur_latin.pad_idx)
self_attn_mask_subseq = get_subsequent_mask(seq_in_pad)
self_attn_mask_keypad = get_attn_key_pad_mask(seq_k=seq_in_pad, seq_q=seq_in_pad, pad_idx=uyghur_latin.pad_idx)
self_attn_mask = (self_attn_mask_keypad + self_attn_mask_subseq).gt(0)
output_length = seq_in_pad.size(1)
dec_enc_attn_mask = get_attn_pad_mask(encoder_padded_outputs, encoder_input_lengths, output_length)
decoder_output = self.dropout(self.trg_embedding(seq_in_pad) * self.x_logit_scale + self.positional_encoding(seq_in_pad))
for layer in self.layers:
decoder_output, decoder_self_attn, decoder_enc_attn = layer(decoder_output, encoder_padded_outputs, non_pad_mask=non_pad_mask, self_attn_mask=self_attn_mask, dec_enc_attn_mask=dec_enc_attn_mask)
decoder_self_attn_list += [decoder_self_attn]
decoder_encoder_attn_list += [decoder_enc_attn]
seq_logit = self.output_linear(decoder_output)
return seq_logit
def greedy_search(self, encoder_padded_outputs):
"""
Greedy search, decode 1-best utterance
args:
encoder_padded_outputs: B x T x H
output:
batch_ids_nbest_hyps: list of nbest in ids (size B)
batch_strs_nbest_hyps: list of nbest in strings (size B)
"""
with torch.no_grad():
device = encoder_padded_outputs.device
max_seq_len = self.trg_max_length
#ys = torch.ones(encoder_padded_outputs.size(0),1).fill_(uyghur_latin.sos_idx).long().to(device) # batch_size x 1
max_seq_len = min(max_seq_len, encoder_padded_outputs.size(1))
inps=[uyghur_latin.sos_idx]
result = []
for t in range(max_seq_len):
ys = torch.LongTensor(inps).unsqueeze(0).to(device)
non_pad_mask = torch.ones_like(ys).float().unsqueeze(-1) # batch_size x t x 1
self_attn_mask = get_subsequent_mask(ys).gt(0) # batch_size x t x t
decoder_output = self.dropout(self.trg_embedding(ys) * self.x_logit_scale + self.positional_encoding(ys))
for layer in self.layers:
decoder_output, _, _ = layer(
decoder_output, encoder_padded_outputs,
non_pad_mask=non_pad_mask,
self_attn_mask=self_attn_mask,
dec_enc_attn_mask=None
)
prob = self.output_linear(decoder_output) # batch_size x t x label_size
_, next_word = torch.max(prob[:, -1], dim=1)
next_word = next_word.item()
result.append(next_word)
if next_word == uyghur_latin.eos_idx:
break
inps.append(next_word)
sent = uyghur_latin.decode(result)
return sent
class DecoderLayer(nn.Module):
"""
Decoder Transformer class
"""
def __init__(self, dim_model, dim_inner, num_heads, dim_key, dim_value, dropout=0.1):
super(DecoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(
num_heads, dim_model, dim_key, dim_value, dropout=dropout)
self.encoder_attn = MultiHeadAttention(
num_heads, dim_model, dim_key, dim_value, dropout=dropout)
self.pos_ffn = PositionwiseFeedForwardWithConv(
dim_model, dim_inner, dropout=dropout)
def forward(self, decoder_input, encoder_output, non_pad_mask=None, self_attn_mask=None, dec_enc_attn_mask=None):
decoder_output, decoder_self_attn = self.self_attn(decoder_input, decoder_input, decoder_input, mask=self_attn_mask)
decoder_output *= non_pad_mask
decoder_output, decoder_encoder_attn = self.encoder_attn(decoder_output, encoder_output, encoder_output, mask=dec_enc_attn_mask)
decoder_output *= non_pad_mask
decoder_output = self.pos_ffn(decoder_output)
decoder_output *= non_pad_mask
return decoder_output, decoder_self_attn, decoder_encoder_attn
"""
Transformer common layers
"""
def get_non_pad_mask(padded_input, input_lengths=None, pad_idx=None):
"""
padding position is set to 0, either use input_lengths or pad_idx
"""
assert input_lengths is not None or pad_idx is not None
if input_lengths is not None:
# padded_input: N x T x ..
N = padded_input.size(0)
non_pad_mask = padded_input.new_ones(padded_input.size()[:-1]) # B x T
for i in range(N):
non_pad_mask[i, input_lengths[i]:] = 0
if pad_idx is not None:
# padded_input: N x T
assert padded_input.dim() == 2
non_pad_mask = padded_input.ne(pad_idx).float()
# unsqueeze(-1) for broadcast
return non_pad_mask.unsqueeze(-1)
def get_attn_key_pad_mask(seq_k, seq_q, pad_idx):
"""
For masking out the padding part of key sequence.
"""
# Expand to fit the shape of key query attention matrix.
len_q = seq_q.size(1)
padding_mask = seq_k.eq(pad_idx)
padding_mask = padding_mask.unsqueeze(1).expand(-1, len_q, -1).byte() # B x T_Q x T_K
return padding_mask
def get_attn_pad_mask(padded_input, input_lengths, expand_length):
"""mask position is set to 1"""
# N x Ti x 1
non_pad_mask = get_non_pad_mask(padded_input, input_lengths=input_lengths)
# N x Ti, lt(1) like not operation
pad_mask = non_pad_mask.squeeze(-1).lt(1)
attn_mask = pad_mask.unsqueeze(1).expand(-1, expand_length, -1)
return attn_mask
def get_subsequent_mask(seq):
''' For masking out the subsequent info. '''
sz_b, len_s = seq.size()
subsequent_mask = torch.triu(
torch.ones((len_s, len_s), device=seq.device, dtype=torch.uint8), diagonal=1)
subsequent_mask = subsequent_mask.unsqueeze(0).expand(sz_b, -1, -1) # b x ls x ls
return subsequent_mask
class PositionalEncoding(nn.Module):
"""
Positional Encoding class
"""
def __init__(self, dim_model, max_length=2000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_length, dim_model, requires_grad=False)
position = torch.arange(0, max_length).unsqueeze(1).float()
exp_term = torch.exp(torch.arange(0, dim_model, 2).float() * -(math.log(10000.0) / dim_model))
pe[:, 0::2] = torch.sin(position * exp_term) # take the odd (jump by 2)
pe[:, 1::2] = torch.cos(position * exp_term) # take the even (jump by 2)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, input):
"""
args:
input: B x T x D
output:
tensor: B x T
"""
return self.pe[:, :input.size(1)]
class PositionwiseFeedForward(nn.Module):
"""
Position-wise Feedforward Layer class
FFN(x) = max(0, xW1 + b1) W2+ b2
"""
def __init__(self, dim_model, dim_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.linear_1 = nn.Linear(dim_model, dim_ff)
self.linear_2 = nn.Linear(dim_ff, dim_model)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(dim_model)
def forward(self, x):
"""
args:
x: tensor
output:
y: tensor
"""
residual = x
output = self.dropout(self.linear_2(F.relu(self.linear_1(x))))
output = self.layer_norm(output + residual)
return output
class PositionwiseFeedForwardWithConv(nn.Module):
"""
Position-wise Feedforward Layer Implementation with Convolution class
"""
def __init__(self, dim_model, dim_hidden, dropout=0.1):
super(PositionwiseFeedForwardWithConv, self).__init__()
self.conv_1 = nn.Conv1d(dim_model, dim_hidden, 1)
self.conv_2 = nn.Conv1d(dim_hidden, dim_model, 1)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(dim_model)
def forward(self, x):
residual = x
output = x.transpose(1, 2)
output = self.conv_2(F.relu(self.conv_1(output)))
output = output.transpose(1, 2)
output = self.dropout(output)
output = self.layer_norm(output + residual)
return output
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, dim_model, dim_key, dim_value, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.dim_model = dim_model
self.dim_key = dim_key
self.dim_value = dim_value
self.query_linear = nn.Linear(dim_model, num_heads * dim_key)
self.key_linear = nn.Linear(dim_model, num_heads * dim_key)
self.value_linear = nn.Linear(dim_model, num_heads * dim_value)
nn.init.normal_(self.query_linear.weight, mean=0, std=np.sqrt(2.0 / (self.dim_model + self.dim_key)))
nn.init.normal_(self.key_linear.weight, mean=0, std=np.sqrt(2.0 / (self.dim_model + self.dim_key)))
nn.init.normal_(self.value_linear.weight, mean=0, std=np.sqrt(2.0 / (self.dim_model + self.dim_value)))
self.attention = ScaledDotProductAttention(temperature=np.power(dim_key, 0.5), attn_dropout=dropout)
self.layer_norm = nn.LayerNorm(dim_model)
self.output_linear = nn.Linear(num_heads * dim_value, dim_model)
nn.init.xavier_normal_(self.output_linear.weight)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, mask=None):
"""
query: B x T_Q x H, key: B x T_K x H, value: B x T_V x H
mask: B x T x T (attention mask)
"""
batch_size, len_query, _ = query.size()
batch_size, len_key, _ = key.size()
batch_size, len_value, _ = value.size()
residual = query
query = self.query_linear(query).view(batch_size, len_query, self.num_heads, self.dim_key) # B x T_Q x num_heads x H_K
key = self.key_linear(key).view(batch_size, len_key, self.num_heads, self.dim_key) # B x T_K x num_heads x H_K
value = self.value_linear(value).view(batch_size, len_value, self.num_heads, self.dim_value) # B x T_V x num_heads x H_V
query = query.permute(2, 0, 1, 3).contiguous().view(-1, len_query, self.dim_key) # (num_heads * B) x T_Q x H_K
key = key.permute(2, 0, 1, 3).contiguous().view(-1, len_key, self.dim_key) # (num_heads * B) x T_K x H_K
value = value.permute(2, 0, 1, 3).contiguous().view(-1, len_value, self.dim_value) # (num_heads * B) x T_V x H_V
if mask is not None:
mask = mask.repeat(self.num_heads, 1, 1) # (B * num_head) x T x T
output, attn = self.attention(query, key, value, mask=mask)
output = output.view(self.num_heads, batch_size, len_query, self.dim_value) # num_heads x B x T_Q x H_V
output = output.permute(1, 2, 0, 3).contiguous().view(batch_size, len_query, -1) # B x T_Q x (num_heads * H_V)
output = self.dropout(self.output_linear(output)) # B x T_Q x H_O
output = self.layer_norm(output + residual)
return output, attn
class ScaledDotProductAttention(nn.Module):
''' Scaled Dot-Product Attention '''
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.softmax = nn.Softmax(dim=2)
def forward(self, q, k, v, mask=None):
"""
"""
attn = torch.bmm(q, k.transpose(1, 2))
attn = attn / self.temperature
if mask is not None:
attn = attn.masked_fill(mask, -np.inf)
attn = self.softmax(attn)
attn = self.dropout(attn)
output = torch.bmm(attn, v)
return output, attn