-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathutils.py
347 lines (296 loc) · 15.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import os
from utils_graph_processing import subgraph_isomorphism_edge_counts, subgraph_isomorphism_vertex_counts, induced_edge_automorphism_orbits, edge_automorphism_orbits, automorphism_orbits
from utils_ids import subgraph_counts2ids
from utils_data_gen import generate_dataset
from utils_graph_learning import multi_class_accuracy
import torch
import torch.nn as nn
import numpy as np
from torch_geometric.data import Data
import networkx as nx
from torch_geometric.data import Data
import glob
import re
import types
def get_custom_edge_list(ks, substructure_type=None, filename=None):
'''
Instantiates a list of `edge_list`s representing substructures
of type `substructure_type` with sizes specified by `ks`.
'''
if substructure_type is None and filename is None:
raise ValueError('You must specify either a type or a filename where to read substructures from.')
edge_lists = []
for k in ks:
if substructure_type is not None:
graphs_nx = getattr(nx, substructure_type)(k)
else:
graphs_nx = nx.read_graph6(os.path.join(filename, 'graph{}c.g6'.format(k)))
if isinstance(graphs_nx, list) or isinstance(graphs_nx, types.GeneratorType):
edge_lists += [list(graph_nx.edges) for graph_nx in graphs_nx]
else:
edge_lists.append(list(graphs_nx.edges))
return edge_lists
def process_arguments(args):
extract_id_fn = subgraph_counts2ids
###### choose the function that computes the automorphism group and the orbits #######
if args['edge_automorphism'] == 'induced':
automorphism_fn = induced_edge_automorphism_orbits if args['id_scope'] == 'local' else automorphism_orbits
elif args['edge_automorphism'] == 'line_graph':
automorphism_fn = edge_automorphism_orbits if args['id_scope'] == 'local' else automorphism_orbits
else:
raise NotImplementedError
###### choose the function that computes the subgraph isomorphisms #######
count_fn = subgraph_isomorphism_edge_counts if args['id_scope'] == 'local'else subgraph_isomorphism_vertex_counts
###### choose the substructures: usually loaded from networkx,
###### except for 'all_simple_graphs' where they need to be precomputed,
###### or when a custom edge list is provided in the input by the user
if args['id_type'] in ['cycle_graph',
'path_graph',
'complete_graph',
'binomial_tree',
'star_graph',
'nonisomorphic_trees']:
args['k'] = args['k'][0]
k_max = args['k']
k_min = 2 if args['id_type'] == 'star_graph' else 3
args['custom_edge_list'] = get_custom_edge_list(list(range(k_min, k_max + 1)), args['id_type'])
elif args['id_type'] in ['cycle_graph_chosen_k',
'path_graph_chosen_k',
'complete_graph_chosen_k',
'binomial_tree_chosen_k',
'star_graph_chosen_k',
'nonisomorphic_trees_chosen_k']:
args['custom_edge_list'] = get_custom_edge_list(args['k'], args['id_type'].replace('_chosen_k',''))
elif args['id_type'] in ['all_simple_graphs']:
args['k'] = args['k'][0]
k_max = args['k']
k_min = 3
filename = os.path.join(args['root_folder'], 'all_simple_graphs')
args['custom_edge_list'] = get_custom_edge_list(list(range(k_min, k_max + 1)), filename=filename)
elif args['id_type'] in ['all_simple_graphs_chosen_k']:
filename = os.path.join(args['root_folder'], 'all_simple_graphs')
args['custom_edge_list'] = get_custom_edge_list(args['k'], filename=filename)
elif args['id_type'] in ['diamond_graph']:
args['k'] = None
graph_nx = nx.diamond_graph()
args['custom_edge_list'] = [list(graph_nx.edges)]
elif args['id_type'] == 'custom':
assert args['custom_edge_list'] is not None, "Custom edge list must be provided."
else:
raise NotImplementedError("Identifiers {} are not currently supported.".format(args['id_type']))
# define if degree is going to be used as a feature and when (for each layer or only at initialization)
if args['inject_degrees']:
args['degree_as_tag'] = [args['degree_as_tag'] for _ in range(args['num_layers'])]
else:
args['degree_as_tag'] = [args['degree_as_tag']] + [False for _ in range(args['num_layers']-1)]
# define if existing features are going to be retained when the degree is used as a feature
args['retain_features'] = [args['retain_features']] + [True for _ in range(args['num_layers']-1)]
# replicate d_out dimensions if the rest are not defined (msg function, mlp hidden dimension, encoders, etc.)
# and repeat hyperparams for every layer
if args['d_msg'] == -1:
args['d_msg'] = [None for _ in range(args['num_layers'])]
elif args['d_msg'] is None:
args['d_msg'] = [args['d_out'] for _ in range(args['num_layers'])]
else:
args['d_msg'] = [args['d_msg'] for _ in range(args['num_layers'])]
if args['d_h'] is None:
args['d_h'] = [[args['d_out']] * (args['num_mlp_layers'] - 1) for _ in range(args['num_layers'])]
else:
args['d_h'] = [[args['d_h']] * (args['num_mlp_layers'] - 1) for _ in range(args['num_layers'])]
if args['d_out_edge_encoder'] is None:
args['d_out_edge_encoder'] = [args['d_out'] for _ in range(args['num_layers'])]
else:
args['d_out_edge_encoder'] = [args['d_out_edge_encoder'] for _ in range(args['num_layers'])]
if args['d_out_node_encoder'] is None:
args['d_out_node_encoder'] = args['d_out']
else:
pass
if args['d_out_id_embedding'] is None:
args['d_out_id_embedding'] = args['d_out']
else:
pass
if args['d_out_degree_embedding'] is None:
args['d_out_degree_embedding'] = args['d_out']
else:
pass
# virtual node configuration for ogb datasets
if args['vn']:
if args['d_out_vn_encoder'] is None:
args['d_out_vn_encoder'] = args['d_out']
else:
pass
if args['d_out_vn'] is None:
args['d_out_vn'] = [args['d_out'] for _ in range(args['num_layers']-1)]
else:
args['d_out_vn'] = [args['d_out_vn'] for _ in range(args['num_layers']-1)]
else:
pass
# repeat hyperparams for every layer
args['d_out'] = [args['d_out'] for _ in range(args['num_layers'])]
args['train_eps'] = [args['train_eps'] for _ in range(args['num_layers'])]
if len(args['final_projection']) == 1:
args['final_projection'] = [args['final_projection'][0] for _ in range(args['num_layers'])] + [True]
args['bn'] = [args['bn'] for _ in range(args['num_layers'])]
args['dropout_features'] = [args['dropout_features'] for _ in range(args['num_layers'])] + [args['dropout_features']]
# loss function & metrics
if args['loss_fn'] == 'CrossEntropyLoss':
assert args['regression'] is False, "Can't use Cross-Entropy loss in regression."
loss_fn = nn.CrossEntropyLoss()
elif args['loss_fn'] == 'BCEWithLogitsLoss':
assert args['regression'] is False, "Can't use binary Cross-Entropy loss in regression."
loss_fn = nn.BCEWithLogitsLoss()
elif args['loss_fn'] == 'MSELoss':
loss_fn = nn.MSELoss()
elif args['loss_fn'] == 'L1Loss':
loss_fn = nn.L1Loss()
else:
raise NotImplementedError
if args['prediction_fn'] == 'multi_class_accuracy':
assert args['regression'] is False, "Can't use Classification Accuracy metric in regression."
prediction_fn = multi_class_accuracy
elif args['prediction_fn'] == 'MSELoss':
prediction_fn = nn.MSELoss(reduction='sum')
elif args['prediction_fn'] == 'L1Loss':
prediction_fn = nn.L1Loss(reduction='sum')
elif args['prediction_fn'] == 'None':
prediction_fn = None
else:
raise NotImplementedError
if args['regression']:
perf_opt = np.argmin
else:
perf_opt = np.argmax
return args, extract_id_fn, count_fn, automorphism_fn, loss_fn, prediction_fn, perf_opt
def prepare_dataset(path,
dataset,
name,
id_scope,
id_type,
k,
regression,
extract_ids_fn,
count_fn,
automorphism_fn,
multiprocessing,
num_processes,
**subgraph_params):
if dataset in ['bioinformatics', 'social', 'chemical', 'ogb', 'SR_graphs']:
data_folder = os.path.join(path, 'processed', id_scope)
if not os.path.exists(data_folder):
os.makedirs(data_folder)
if id_type != 'custom':
if subgraph_params['induced']:
if subgraph_params['directed_orbits'] and id_scope == 'local':
data_file = os.path.join(data_folder, '{}_induced_directed_orbits_{}.pt'.format(id_type, k))
else:
data_file = os.path.join(data_folder, '{}_induced_{}.pt'.format(id_type, k))
else:
if subgraph_params['directed_orbits'] and id_scope == 'local':
data_file = os.path.join(data_folder, '{}_directed_orbits_{}.pt'.format(id_type, k))
else:
data_file = os.path.join(data_folder, '{}_{}.pt'.format(id_type, k))
maybe_load = True
else:
data_file = None # we don't save custom substructure counts
maybe_load = False
loaded = False
else:
raise NotImplementedError("Dataset family {} is not currently supported.".format(dataset))
# try to load, possibly downgrading
if maybe_load:
if os.path.exists(data_file): # load
graphs_ptg, num_classes, orbit_partition_sizes = load_dataset(data_file)
loaded = True
else: # try downgrading. Currently works only when for each k there is only one substructure in the family
if id_type in ['cycle_graph',
'path_graph',
'complete_graph',
'binomial_tree',
'star_graph']:
k_min = 2 if id_type == 'star_graph' else 3
succeded, graphs_ptg, num_classes, orbit_partition_sizes = try_downgrading(data_folder,
id_type,
subgraph_params['induced'],
subgraph_params['directed_orbits']
and id_scope == 'local',
k, k_min)
if succeded: # save the dataset
print("Saving dataset to {}".format(data_file))
torch.save((graphs_ptg, num_classes, orbit_partition_sizes), data_file)
loaded = True
if not loaded:
graphs_ptg, num_classes, num_node_type, num_edge_type, orbit_partition_sizes = generate_dataset(path,
name,
k,
extract_ids_fn,
count_fn,
automorphism_fn,
regression,
id_type,
multiprocessing,
num_processes,
**subgraph_params)
if data_file is not None:
print("Saving dataset to {}".format(data_file))
torch.save((graphs_ptg, num_classes, orbit_partition_sizes), data_file)
if num_node_type is not None:
torch.save((num_node_type, num_edge_type), os.path.join(path, 'processed', 'num_feature_types.pt'))
return graphs_ptg, num_classes, orbit_partition_sizes
def load_dataset(data_file):
'''
Loads dataset from `data_file`.
'''
print("Loading dataset from {}".format(data_file))
dataset_obj = torch.load(data_file)
graphs_ptg = dataset_obj[0]
num_classes = dataset_obj[1]
orbit_partition_sizes = dataset_obj[2]
return graphs_ptg, num_classes, orbit_partition_sizes
def try_downgrading(data_folder, id_type, induced, directed_orbits, k, k_min):
'''
Extracts the substructures of size up to the `k`, if a collection of substructures
with size larger than k has already been computed.
'''
found_data_filename, k_found = find_id_filename(data_folder, id_type, induced, directed_orbits, k)
if found_data_filename is not None:
graphs_ptg, num_classes, orbit_partition_sizes = load_dataset(found_data_filename)
print("Downgrading k from dataset {}...".format(found_data_filename))
graphs_ptg, orbit_partition_sizes = downgrade_k(graphs_ptg, k, orbit_partition_sizes, k_min)
return True, graphs_ptg, num_classes, orbit_partition_sizes
else:
return False, None, None, None
def find_id_filename(data_folder, id_type, induced, directed_orbits, k):
'''
Looks for existing precomputed datasets in `data_folder` with counts for substructure
`id_type` larger `k`.
'''
if induced:
if directed_orbits:
pattern = os.path.join(data_folder, '{}_induced_directed_orbits_[0-9]*.pt'.format(id_type))
else:
pattern = os.path.join(data_folder, '{}_induced_[0-9]*.pt'.format(id_type))
else:
if directed_orbits:
pattern = os.path.join(data_folder, '{}_directed_orbits_[0-9]*.pt'.format(id_type))
else:
pattern = os.path.join(data_folder, '{}_[0-9]*.pt'.format(id_type))
filenames = glob.glob(pattern)
for name in filenames:
k_found = int(re.findall(r'\d+', name)[-1])
if k_found >= k:
return name, k_found
return None, None
def downgrade_k(dataset, k, orbit_partition_sizes, k_min):
'''
Donwgrades `dataset` by keeping only the orbits of the requested substructures.
'''
feature_vector_size = sum(orbit_partition_sizes[0:k-k_min+1])
graphs_ptg = list()
for data in dataset:
new_data = Data()
for attr in data.__iter__():
name, value = attr
setattr(new_data, name, value)
setattr(new_data, 'identifiers', data.identifiers[:, 0:feature_vector_size])
graphs_ptg.append(new_data)
return graphs_ptg, orbit_partition_sizes[0:k-k_min+1]