-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtreap.go
831 lines (718 loc) · 19.9 KB
/
treap.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
// Package interval provides fast lookups and various other methods for generic one-dimensional intervals.
//
// The author of the library uses the package for fast IP range lookups in access control lists (ACL)
// and in the author's own IP address management (IPAM) and network management software,
// see also the author's [iprange package].
//
// However, the interval package is useful for all one-dimensional intervals, e.g. time intervals.
//
// [iprange package]: https://github.com/gaissmai/iprange
package interval
import (
"math/rand"
"sync"
)
// node is the basic recursive data structure.
type node[T any] struct {
// augment the treap for interval lookups
minUpper *node[T] // pointer to node in subtree with min upper value
maxUpper *node[T] // pointer to node in subtree with max upper value
//
// base treap fields, in memory efficient order
left *node[T]
right *node[T]
prio uint32 // random key for binary heap, balances the tree
item T // generic key/value
}
// Tree is the public handle, using it without initialization will panic.
type Tree[T any] struct {
root *node[T]
cmp func(T, T) (ll, rr, lr, rl int)
}
// NewTree initializes the interval tree with the compare function and items from type T.
//
// cmp(a, b T) (ll, rr, lr, rl int)
//
// The result of cmp() must be four int values:
//
// ll: left point interval a compared with left point interval b (-1, 0, +1)
// rr: right point interval a compared with right point interval b (-1, 0, +1)
// lr: left point interval a compared with right point interval b (-1, 0, +1)
// rl: right point interval a compared with left point interval b (-1, 0, +1)
func NewTree[T any](cmp func(a, b T) (ll, rr, lr, rl int), items ...T) *Tree[T] {
var t Tree[T]
t.cmp = cmp
// mutable insert
for i := range items {
t.root = t.insert(t.root, t.makeNode(items[i]), false)
}
return &t
}
// NewTreeConcurrent, convenience function for initializing the interval tree for large inputs (> 100_000).
// A good value reference for jobs is the number of logical CPUs usable by the current process.
func NewTreeConcurrent[T any](jobs int, cmp func(a, b T) (ll, rr, lr, rl int), items ...T) *Tree[T] {
// define a min chunk size, don't split in too small chunks
const minChunkSize = 25_000
// no fan-out for small input slice or just one job
l := len(items)
if l <= minChunkSize || jobs <= 1 {
return NewTree[T](cmp, items...)
}
chunkSize := l/jobs + 1
if chunkSize < minChunkSize {
chunkSize = minChunkSize
}
var wg sync.WaitGroup
var chunk []T
partialTrees := make(chan *Tree[T])
// fan out
for ; l > 0; l = len(items) {
// partition input into chunks
switch {
case l > chunkSize:
chunk = items[:chunkSize]
items = items[chunkSize:]
default: // rest
chunk = items[:l]
items = nil
}
wg.Add(1)
go func(chunk ...T) {
defer wg.Done()
partialTrees <- NewTree[T](cmp, chunk...)
}(chunk...)
}
// wait and close chan
go func() {
wg.Wait()
close(partialTrees)
}()
// fan in
t := NewTree[T](cmp)
for other := range partialTrees {
// fast union
t.Union(other, false)
}
return t
}
// makeNode, create new node with item and random priority.
func (t *Tree[T]) makeNode(item T) *node[T] {
n := new(node[T])
n.item = item
n.prio = rand.Uint32()
t.recalc(n) // initial calculation of finger pointers...
return n
}
// copyNode, make a shallow copy of the pointers and the item, no recalculation necessary.
func (n *node[T]) copyNode() *node[T] {
c := *n
return &c
}
// InsertImmutable elements into the tree, returns the new Tree.
// If an element is a duplicate, it replaces the previous element.
func (t Tree[T]) InsertImmutable(items ...T) *Tree[T] {
for i := range items {
t.root = t.insert(t.root, t.makeNode(items[i]), true)
}
return &t
}
// Insert inserts items into the tree, changing the original tree.
// If the original tree does not need to be preserved then this is much faster than the immutable insert.
func (t *Tree[T]) Insert(items ...T) {
for i := range items {
t.root = t.insert(t.root, t.makeNode(items[i]), false)
}
}
// insert into tree, changing nodes are copied, new treap is returned, old treap is modified if immutable is false.
func (t *Tree[T]) insert(n, m *node[T], immutable bool) *node[T] {
if n == nil {
return m
}
// if m is the new root?
if m.prio >= n.prio {
//
// m
// | split t in ( <m | dupe? | >m )
// v
// t
// / \
// l d(upe)
// / \ / \
// l r l r
// /
// l
//
l, dupe, r := t.split(n, m.item, immutable)
// replace dupe with m. m has same key but different prio than dupe, a join() is required
if dupe != nil {
return t.join(l, t.join(m, r, immutable), immutable)
}
// no duplicate, take m as new root
//
// m
// / \
// <m >m
//
m.left, m.right = l, r
t.recalc(m)
return m
}
cmp := t.compare(m.item, n.item)
if cmp == 0 {
// replace duplicate item with m, but m has different prio, a join() is required
return t.join(n.left, t.join(m, n.right, immutable), immutable)
}
if immutable {
n = n.copyNode()
}
switch {
case cmp < 0: // rec-descent
n.left = t.insert(n.left, m, immutable)
//
// R
// m l r
// l r
//
case cmp > 0: // rec-descent
n.right = t.insert(n.right, m, immutable)
//
// R
// l r m
// l r
//
}
t.recalc(n) // node has changed, recalc
return n
}
// DeleteImmutable removes an item if it exists, returns the new tree and true, false if not found.
func (t Tree[T]) DeleteImmutable(item T) (*Tree[T], bool) {
// split/join must be immutable
l, m, r := t.split(t.root, item, true)
t.root = (&t).join(l, r, true)
ok := m != nil
return &t, ok
}
// Delete removes an item from tree, returns true if it exists, false otherwise.
// If the original tree does not need to be preserved then this is much faster than the immutable delete.
func (t *Tree[T]) Delete(item T) bool {
l, m, r := t.split(t.root, item, false)
t.root = t.join(l, r, false)
return m != nil
}
// Union combines any two trees. In case of duplicate items, the "overwrite" flag
// controls whether the union keeps the original or whether it is replaced by the item in the other treap.
//
// The "immutable" flag controls whether the two trees are allowed to be modified.
//
// To create very large trees, it may be time-saving to slice the input data into chunks,
// fan out for creation and combine the generated subtrees with non-immutable unions.
func (t *Tree[T]) Union(other *Tree[T], overwrite bool) {
t.root = t.union(t.root, other.root, overwrite, false)
}
func (t Tree[T]) UnionImmutable(other *Tree[T], overwrite bool) *Tree[T] {
t.root = t.union(t.root, other.root, overwrite, true)
return &t
}
// union combines to treaps.
func (t *Tree[T]) union(n, m *node[T], overwrite bool, immutable bool) *node[T] {
// recursion stop condition
if n == nil {
return m
}
if m == nil {
return n
}
// swap treaps if needed, treap with higher prio remains as new root
if n.prio < m.prio {
n, m = m, n
overwrite = !overwrite
}
// immutable union, copy remaining root
if immutable {
n = n.copyNode()
}
// the treap with the lower priority is split with the root key in the treap with the higher priority
l, dupe, r := t.split(m, n.item, immutable)
// the treaps may have duplicate items
if overwrite && dupe != nil {
n.item = dupe.item
}
// rec-descent
n.left = t.union(n.left, l, overwrite, immutable)
n.right = t.union(n.right, r, overwrite, immutable)
t.recalc(n)
return n
}
// split the treap into all nodes that compare less-than, equal
// and greater-than the provided item (BST key). The resulting nodes are
// properly formed treaps or nil.
// If the split must be immutable, first copy concerned nodes.
func (t *Tree[T]) split(n *node[T], key T, immutable bool) (left, mid, right *node[T]) {
// recursion stop condition
if n == nil {
return nil, nil, nil
}
if immutable {
n = n.copyNode()
}
switch cmp := t.compare(n.item, key); {
case cmp < 0:
l, m, r := t.split(n.right, key, immutable)
n.right = l
t.recalc(n) // node has changed, recalc
return n, m, r
//
// (k)
// R
// l r ==> (R.r, m, r) = split(R.r, k)
// l r
//
case cmp > 0:
l, m, r := t.split(n.left, key, immutable)
n.left = r
t.recalc(n) // node has changed, recalc
return l, m, n
//
// (k)
// R
// l r ==> (l, m, R.l) = split(R.l, k)
// l r
//
default:
l, r := n.left, n.right
n.left, n.right = nil, nil
t.recalc(n) // node has changed, recalc
return l, n, r
//
// (k)
// R
// l r ==> (R.l, R, R.r)
// l r
//
}
}
// Find, searches for the exact interval in the tree and returns it as well as true,
// otherwise the zero value for item is returned and false.
func (t Tree[T]) Find(item T) (result T, ok bool) {
n := t.root
for {
if n == nil {
return
}
switch cmp := t.compare(item, n.item); {
case cmp == 0:
return n.item, true
case cmp < 0:
n = n.left
case cmp > 0:
n = n.right
}
}
}
// CoverLCP returns the interval with the longest-common-prefix that covers the item.
// If the item isn't covered by any interval, the zero value and false is returned.
//
// The meaning of 'LCP' is best explained with examples:
//
// A, B and C covers the item, but B has longest-common-prefix (LCP) with item.
//
// ------LCP--->|
//
// Item |----|
//
// A |------------------------|
// B |---------------------------|
// C |---------------|
// D |--|
//
// e.g. for this interval tree
//
// ▼
// ├─ 0...6
// │ └─ 0...5
// ├─ 1...8
// │ ├─ 1...7
// │ │ └─ 1...5
// │ │ └─ 1...4
// │ └─ 2...8
// │ ├─ 2...7
// │ └─ 4...8
// │ └─ 6...7
// └─ 7...9
//
// tree.CoverLCP(ival{0,5}) returns ival{0,5}, true
// tree.CoverLCP(ival{3,6}) returns ival{2,7}, true
// tree.CoverLCP(ival{6,9}) returns ival{}, false
//
// If the interval tree consists of IP CIDRs, CoverLCP is identical to the
// longest-prefix-match.
//
// example: IP CIDRs as intervals
//
// ▼
// ├─ 0.0.0.0/0
// │ ├─ 10.0.0.0/8
// │ │ ├─ 10.0.0.0/24
// │ │ └─ 10.0.1.0/24
// │ └─ 127.0.0.0/8
// │ └─ 127.0.0.1/32
// └─ ::/0
// ├─ ::1/128
// ├─ 2000::/3
// │ └─ 2001:db8::/32
// ├─ fc00::/7
// ├─ fe80::/10
// └─ ff00::/8
//
// tree.CoverLCP("10.0.1.17/32") returns "10.0.1.0/24", true
// tree.CoverLCP("2001:7c0:3100::/40") returns "2000::/3", true
func (t Tree[T]) CoverLCP(item T) (result T, ok bool) {
return t.lcp(t.root, item)
}
// lcp rec-descent.
func (t *Tree[T]) lcp(n *node[T], item T) (result T, ok bool) {
for {
if n == nil {
// stop condition
return
}
// fast exit, node has too small max upper interval value (augmented value)
if t.cmpRR(item, n.maxUpper.item) > 0 {
// stop condition
return
}
cmp := t.compare(n.item, item)
if cmp == 0 {
// equality is always the shortest containing hull
return n.item, true
}
if cmp < 0 {
break
}
// item too big, go left
n = n.left
}
// LCP => right backtracking
if result, ok = t.lcp(n.right, item); ok {
return result, ok
}
// not found in right subtree, try this node
if t.cmpCovers(n.item, item) {
return n.item, true
}
// left rec-descent
return t.lcp(n.left, item)
}
// CoverSCP returns the interval with the shortest-common-prefix that covers the item.
// If the item isn't covered by any interval, the zero value and false is returned.
//
// The meaning of 'SCP' is best explained with examples:
//
// A, B and C covers the item, but A has shortest-common-prefix (SCP) with item.
//
// --SCP-->|
//
// Item |----|
//
// A |------------------------|
// B |---------------------------|
// C |---------------|
// D |-----------------|
//
// e.g. for this interval tree
//
// ▼
// ├─ 0...6
// │ └─ 0...5
// ├─ 1...8
// │ ├─ 1...7
// │ │ └─ 1...5
// │ │ └─ 1...4
// │ └─ 2...8
// │ ├─ 2...7
// │ └─ 4...8
// │ └─ 6...7
// └─ 7...9
//
// tree.CoverSCP(ival{0,6}) returns ival{0,6}, true
// tree.CoverSCP(ival{0,5}) returns ival{0,6}, true
// tree.CoverSCP(ival{3,7}) returns ival{1,8}, true
// tree.CoverSCP(ival{6,9}) returns ival{}, false
func (t Tree[T]) CoverSCP(item T) (result T, ok bool) {
l, m, _ := t.split(t.root, item, true)
result, ok = t.scp(l, item)
if !ok && m != nil {
return m.item, true
}
return result, ok
}
// scp rec-descent
func (t *Tree[T]) scp(n *node[T], item T) (result T, ok bool) {
if n == nil {
return
}
// fast exit, node has too small max upper interval value (augmented value)
if t.cmpRR(item, n.maxUpper.item) > 0 {
return
}
// SCP => left backtracking
if result, ok = t.scp(n.left, item); ok {
return result, ok
}
// this item
if t.cmpCovers(n.item, item) {
return n.item, true
}
// right rec-descent
return t.scp(n.right, item)
}
// Covers returns all intervals that cover the item.
// The returned intervals are in sorted order.
func (t Tree[T]) Covers(item T) []T {
// split, reduce the search space
l, m, _ := t.split(t.root, item, true)
result := t.covers(l, item)
if m != nil {
return append(result, m.item)
}
return result
}
// covers rec-descent
func (t *Tree[T]) covers(n *node[T], item T) (result []T) {
if n == nil {
return
}
// nope, subtree has too small upper interval value
if t.cmpRR(item, n.maxUpper.item) > 0 {
return
}
// in-order traversal for supersets, recursive call to left tree
result = append(result, t.covers(n.left, item)...)
// n.item covers item
if t.cmpCovers(n.item, item) {
result = append(result, n.item)
}
// recursive call to right tree
return append(result, t.covers(n.right, item)...)
}
// CoveredBy returns all intervals that are covered by item.
// The returned intervals are in sorted order.
func (t Tree[T]) CoveredBy(item T) []T {
var result []T
// split, reduce the search space
_, m, r := t.split(t.root, item, true)
if m != nil {
result = append(result, m.item)
}
return append(result, t.coveredBy(r, item)...)
}
// coveredBy rec-descent
func (t *Tree[T]) coveredBy(n *node[T], item T) (result []T) {
if n == nil {
return
}
// nope, subtree has too big upper interval value
if t.cmpRR(item, n.minUpper.item) < 0 {
return
}
// in-order traversal for subsets, recursive call to left tree
result = append(result, t.coveredBy(n.left, item)...)
// item covers n.item
if t.cmpCovers(item, n.item) {
result = append(result, n.item)
}
// recursive call to right tree
return append(result, t.coveredBy(n.right, item)...)
}
// Intersects returns true if any interval intersects item.
func (t Tree[T]) Intersects(item T) bool {
return t.intersects(t.root, item)
}
// intersects rec-descent
func (t *Tree[T]) intersects(n *node[T], item T) bool {
if n == nil {
return false
}
// this n.item, fast exit
if t.cmpIntersects(n.item, item) {
return true
}
// don't traverse this subtree, subtree has too small upper value for intersection
// item -> |------|
// |-------------| <- maxUpper
if t.cmpLR(item, n.maxUpper.item) > 0 {
return false
}
// recursive call to left tree
// fast return if true
if t.intersects(n.left, item) {
return true
}
// don't traverse right subtree, subtree has too small left value for intersection.
// |------------| <- item
// n.item -> |-------------|
if t.cmpRL(item, n.item) < 0 {
return false
}
// recursive call to right tree
return t.intersects(n.right, item)
}
// Intersections returns all intervals that intersect with item.
// The returned intervals are in sorted order.
func (t Tree[T]) Intersections(item T) []T {
return t.intersections(t.root, item)
}
// intersections rec-descent
func (t *Tree[T]) intersections(n *node[T], item T) (result []T) {
if n == nil {
return
}
// don't traverse this subtree, subtree has too small upper value for intersection
// item -> |------|
// |-------------| <- maxUpper
if t.cmpLR(item, n.maxUpper.item) > 0 {
return
}
// in-order traversal for intersections, recursive call to left tree
result = append(result, t.intersections(n.left, item)...)
// this n.item
if t.cmpIntersects(n.item, item) {
result = append(result, n.item)
}
// don't traverse right subtree, subtree has too small left value for intersection.
// |------------| <- item
// n.item -> |-------------|
if t.cmpRL(item, n.item) < 0 {
return
}
// recursive call to right tree
return append(result, t.intersections(n.right, item)...)
}
// Precedes returns all intervals that precedes the item.
// The returned intervals are in sorted order.
//
// example:
//
// Item |-----------------|
//
// A |---------------------------------------|
// B |-----|
// C |-----------------|
// D |-----------------|
//
// Precedes(item) => [D, B]
func (t Tree[T]) Precedes(item T) []T {
// split, reduce the search space
l, _, _ := t.split(t.root, item, true)
return t.precedes(l, item)
}
// precedes rec-desent
func (t *Tree[T]) precedes(n *node[T], item T) (result []T) {
if n == nil {
return
}
// nope, all intervals in this subtree intersects with item
if t.cmpLR(item, n.minUpper.item) <= 0 {
return
}
// recursive call to ...
result = append(result, t.precedes(n.left, item)...)
// this n.item
if !t.cmpIntersects(n.item, item) {
result = append(result, n.item)
}
// recursive call to right tree
return append(result, t.precedes(n.right, item)...)
}
// PrecededBy returns all intervals that are preceded by the item.
// The returned intervals are in sorted order.
//
// example:
//
// Item |-----|
//
// A |---------------------------------------|
// B |-----|
// C |-----------------|
// D |-----------------|
//
// PrecededBy(item) => [B, D]
func (t Tree[T]) PrecededBy(item T) []T {
// split, reduce the search space
_, _, r := t.split(t.root, item, true)
return t.precededBy(r, item)
}
// precededBy rec-desent
func (t *Tree[T]) precededBy(n *node[T], item T) (result []T) {
if n == nil {
return
}
// recursive call to left
result = append(result, t.precededBy(n.left, item)...)
// this n.item
if !t.cmpIntersects(n.item, item) {
result = append(result, n.item)
}
// recursive call to right
return append(result, t.precededBy(n.right, item)...)
}
// join combines two disjunct treaps. All nodes in treap n have keys <= that of treap m
// for this algorithm to work correctly. If the join must be immutable, first copy concerned nodes.
func (t *Tree[T]) join(n, m *node[T], immutable bool) *node[T] {
// recursion stop condition
if n == nil {
return m
}
if m == nil {
return n
}
if n.prio > m.prio {
// n
// l r m
// l r
//
if immutable {
n = n.copyNode()
}
n.right = t.join(n.right, m, immutable)
t.recalc(n)
return n
} else {
// m
// n l r
// l r
//
if immutable {
m = m.copyNode()
}
m.left = t.join(n, m.left, immutable)
t.recalc(m)
return m
}
}
// recalc the augmented fields in treap node after each creation/modification with values in descendants.
// Only one level deeper must be considered. The treap datastructure is very easy to augment.
func (t *Tree[T]) recalc(n *node[T]) {
if n == nil {
return
}
// start with upper min/max pointing to self
n.minUpper = n
n.maxUpper = n
if n.right != nil {
if t.cmpRR(n.minUpper.item, n.right.minUpper.item) > 0 {
n.minUpper = n.right.minUpper
}
if t.cmpRR(n.maxUpper.item, n.right.maxUpper.item) < 0 {
n.maxUpper = n.right.maxUpper
}
}
if n.left != nil {
if t.cmpRR(n.minUpper.item, n.left.minUpper.item) > 0 {
n.minUpper = n.left.minUpper
}
if t.cmpRR(n.maxUpper.item, n.left.maxUpper.item) < 0 {
n.maxUpper = n.left.maxUpper
}
}
}