-
Notifications
You must be signed in to change notification settings - Fork 101
/
hdrcnn_predict.py
173 lines (146 loc) · 6.95 KB
/
hdrcnn_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
" License:
" -----------------------------------------------------------------------------
" Copyright (c) 2017, Gabriel Eilertsen.
" All rights reserved.
"
" Redistribution and use in source and binary forms, with or without
" modification, are permitted provided that the following conditions are met:
"
" 1. Redistributions of source code must retain the above copyright notice,
" this list of conditions and the following disclaimer.
"
" 2. Redistributions in binary form must reproduce the above copyright notice,
" this list of conditions and the following disclaimer in the documentation
" and/or other materials provided with the distribution.
"
" 3. Neither the name of the copyright holder nor the names of its contributors
" may be used to endorse or promote products derived from this software
" without specific prior written permission.
"
" THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
" ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
" LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
" POSSIBILITY OF SUCH DAMAGE.
" -----------------------------------------------------------------------------
"
" Description: TensorFlow prediction script, for reconstructing HDR images
from single expousure LDR images.
" Author: Gabriel Eilertsen, gabriel.eilertsen@liu.se
" Date: Aug 2017
"""
import os, sys
import tensorflow as tf
import tensorlayer as tl
import numpy as np
import network, img_io
eps = 1e-5
def print_(str, color='', bold=False):
if color == 'w':
sys.stdout.write('\033[93m')
elif color == "e":
sys.stdout.write('\033[91m')
elif color == "m":
sys.stdout.write('\033[95m')
if bold:
sys.stdout.write('\033[1m')
sys.stdout.write(str)
sys.stdout.write('\033[0m')
sys.stdout.flush()
# Settings, using TensorFlow arguments
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer("width", "1024", "Reconstruction image width")
tf.flags.DEFINE_integer("height", "768", "Reconstruction image height")
tf.flags.DEFINE_string("im_dir", "data", "Path to image directory or an individual image")
tf.flags.DEFINE_string("out_dir", "out", "Path to output directory")
tf.flags.DEFINE_string("params", "hdrcnn_params.npz", "Path to trained CNN weights")
tf.flags.DEFINE_float("scaling", "1.0", "Pre-scaling, which is followed by clipping, in order to remove compression artifacts close to highlights")
tf.flags.DEFINE_float("gamma", "1.0", "Gamma/exponential curve applied before, and inverted after, prediction. This can be used to control the boost of reconstructed pixels.")
# Round to be multiple of 32, so that autoencoder pooling+upsampling
# yields same size as input image
sx = int(np.maximum(32, np.round(FLAGS.width/32.0)*32))
sy = int(np.maximum(32, np.round(FLAGS.height/32.0)*32))
if sx != FLAGS.width or sy != FLAGS.height:
print_("Warning: ", 'w', True)
print_("prediction size has been changed from %dx%d pixels to %dx%d\n"%(FLAGS.width, FLAGS.height, sx, sy), 'w')
print_(" pixels, to comply with autoencoder pooling and up-sampling.\n\n", 'w')
# Info
print_("\n\n\t-------------------------------------------------------------------\n", 'm')
print_("\t HDR image reconstruction from a single exposure using deep CNNs\n\n", 'm')
print_("\t Prediction settings\n", 'm')
print_("\t -------------------\n", 'm')
print_("\t Input image directory/file: %s\n" % FLAGS.im_dir, 'm')
print_("\t Output directory: %s\n" % FLAGS.out_dir, 'm')
print_("\t CNN weights: %s\n" % FLAGS.params, 'm')
print_("\t Prediction resolution: %dx%d pixels\n" % (sx, sy), 'm')
if FLAGS.scaling > 1.0:
print_("\t Pre-scaling: %0.4f\n" % FLAGS.scaling, 'm')
if FLAGS.gamma > 1.0 + eps or FLAGS.gamma < 1.0 - eps:
print_("\t Gamma: %0.4f\n" % FLAGS.gamma, 'm')
print_("\t-------------------------------------------------------------------\n\n\n", 'm')
# Single frame
frames = [FLAGS.im_dir]
# If directory is supplied, get names of all files in the path
if os.path.isdir(FLAGS.im_dir):
frames = [os.path.join(FLAGS.im_dir, name)
for name in sorted(os.listdir(FLAGS.im_dir))
if os.path.isfile(os.path.join(FLAGS.im_dir, name))]
# Placeholder for image input
x = tf.placeholder(tf.float32, shape=[1, sy, sx, 3])
# HDR reconstruction autoencoder model
print_("Network setup:\n")
net = network.model(x)
# The CNN prediction (this also includes blending with input image x)
y = network.get_final(net, x)
# TensorFlow session for running inference
sess = tf.InteractiveSession()
# Load trained CNN weights
print_("\nLoading trained parameters from '%s'..."%FLAGS.params)
load_params = tl.files.load_npz(name=FLAGS.params)
tl.files.assign_params(sess, load_params, net)
print_("\tdone\n")
if not os.path.exists(FLAGS.out_dir):
os.makedirs(FLAGS.out_dir)
print_("\nStarting prediction...\n\n")
k = 0
for i in range(len(frames)):
print("Frame %d: '%s'"%(i,frames[i]))
try:
# Read frame
print_("\tReading...")
x_buffer = img_io.readLDR(frames[i], (sy,sx), True, FLAGS.scaling)
print_("\tdone")
print_("\t(Saturation: %0.2f%%)\n" % (100.0*(x_buffer>=1).sum()/x_buffer.size), 'm')
# Run prediction.
# The gamma value is used to allow for boosting/reducing the intensity of
# the reconstructed highlights. If y = f(x) is the reconstruction, the gamma
# g alters this according to y = f(x^(1/g))^g
print_("\tInference...")
feed_dict = {x: np.power(np.maximum(x_buffer, 0.0), 1.0/FLAGS.gamma)}
y_predict = sess.run([y], feed_dict=feed_dict)
y_predict = np.power(np.maximum(y_predict, 0.0), FLAGS.gamma)
print_("\tdone\n")
# Gamma corrected output
y_gamma = np.power(np.maximum(y_predict, 0.0), 0.5)
# Write to disc
print_("\tWriting...")
k += 1;
img_io.writeLDR(x_buffer, '%s/%06d_in.png' % (FLAGS.out_dir, k), -3)
img_io.writeLDR(y_gamma, '%s/%06d_out.png' % (FLAGS.out_dir, k), -3)
img_io.writeEXR(y_predict, '%s/%06d_out.exr' % (FLAGS.out_dir, k))
print_("\tdone\n")
except img_io.IOException as e:
print_("\n\t\tWarning! ", 'w', True)
print_("%s\n"%e, 'w')
except Exception as e:
print_("\n\t\tError: ", 'e', True)
print_("%s\n"%e, 'e')
print_("Done!\n")
sess.close()